健康和疾病中大脑回路动态的神经流形分析。

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Journal of Computational Neuroscience Pub Date : 2023-02-01 Epub Date: 2022-12-16 DOI:10.1007/s10827-022-00839-3
Rufus Mitchell-Heggs, Seigfred Prado, Giuseppe P Gava, Mary Ann Go, Simon R Schultz
{"title":"健康和疾病中大脑回路动态的神经流形分析。","authors":"Rufus Mitchell-Heggs, Seigfred Prado, Giuseppe P Gava, Mary Ann Go, Simon R Schultz","doi":"10.1007/s10827-022-00839-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as \"neural manifolds\", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural manifold analysis of brain circuit dynamics in health and disease.\",\"authors\":\"Rufus Mitchell-Heggs, Seigfred Prado, Giuseppe P Gava, Mary Ann Go, Simon R Schultz\",\"doi\":\"10.1007/s10827-022-00839-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as \\\"neural manifolds\\\", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-022-00839-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-022-00839-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实验神经科学的最新发展使同时记录数千个神经元的活动成为可能。然而,与适用于单细胞实验的分析方法相比,用于这种大规模神经记录的分析方法发展缓慢。最近流行的一种方法是神经流形学习。这种方法利用了这样一个事实,即即使神经数据集可能非常高维,但神经活动的动态往往会穿越一个低得多的维空间。这些低维神经子空间形成的拓扑结构被称为 "神经流形",有可能为神经回路动力学与认知功能和行为表现之间的联系提供洞察力。在本文中,我们回顾了神经流形学习的一些线性和非线性方法,包括主成分分析(PCA)、多维缩放(MDS)、Isomap、局部线性嵌入(LLE)、拉普拉斯特征图(LEM)、t-SNE 和均匀流形逼近与投影(UMAP)。我们用通用的数学术语概述了这些方法,并比较了它们在神经数据分析中的优缺点。我们将这些方法应用于已发表文献中的一些数据集,比较了应用于海马位置细胞、伸手任务中的运动皮层神经元和多重行为任务中的前额叶皮层神经元所得到的流形。我们发现,在许多情况下,线性算法与非线性方法产生的结果相似,但在行为复杂度较高的特殊情况下,非线性方法倾向于找到低维流形,这可能会牺牲可解释性。我们通过模拟阿尔茨海默病的小鼠模型,证明这些方法适用于神经系统疾病的研究,并推测神经流形分析可能有助于我们理解分子和细胞神经病理学在电路层面的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neural manifold analysis of brain circuit dynamics in health and disease.

Neural manifold analysis of brain circuit dynamics in health and disease.

Neural manifold analysis of brain circuit dynamics in health and disease.

Neural manifold analysis of brain circuit dynamics in health and disease.

Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as "neural manifolds", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信