增强环形燃烧室尾管气膜冷却的三维狭缝射流结构多目标优化

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Ananda Prasanna Revulagadda , Rampada Rana , Batchu Suresh , C. Balaji , Arvind Pattamatta
{"title":"增强环形燃烧室尾管气膜冷却的三维狭缝射流结构多目标优化","authors":"Ananda Prasanna Revulagadda ,&nbsp;Rampada Rana ,&nbsp;Batchu Suresh ,&nbsp;C. Balaji ,&nbsp;Arvind Pattamatta","doi":"10.1016/j.ijheatmasstransfer.2023.124745","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports the results of a combined experimental and numerical investigation of the performance of a three-dimensional film cooling slot configuration and its optimization using an evolutionary-based genetic algorithm. The primary objective of the optimization is to maximize the area-averaged film cooling effectiveness (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>) and minimize its standard deviation (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span>) at a fixed coolant mass flux for a single liner. The experimental study is conducted on flow and heat transfer characteristics to validate the numerical model under laboratory conditions (low temperature and pressure). A design space is created using the Latin hypercube sampling technique, and it is solved using steady-state RANS simulations with the validated numerical model to estimate the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> under actual engine conditions (high temperature and pressure). A surrogate model is developed using the kriging technique to predict the objective functions with the geometrical parameters of the slot. Following this, the optimum configuration is identified using the genetic algorithm. The geometrical parameters are slot jet diameter (<em>d</em>), slot jet pitch (<em>p</em>), lip taper angle (<em>α</em>), and lip length (<em>L</em>). The numerical results show that the optimum configuration outperforms the two reference configurations of the baseline combustor. At a blowing ratio <span><math><mo>(</mo><mi>B</mi><mi>R</mi><mo>)</mo></math></span> of 1, the optimum configuration enhances the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> by 8% and reduces the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> by 6.6% compared to reference -1 configuration. Similarly, compared to reference -2, the optimum configuration enhances the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> by 19.8% and reduces the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> by 5.2.%. Furthermore, under actual engine conditions, a numerical study is conducted on a subsequent row of liners to determine the optimum length of the cooling ring. The numerical results show that the optimum slot configuration cools an additional liner length (<span><math><mi>G</mi><mo>/</mo><mi>S</mi></math></span>) of 5.5 compared to the reference-1 slot and results in a reduction of one pair of cooling rings in the combustor, which contributes to a 16.6% less coolant mass flux.</p></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"218 ","pages":"Article 124745"},"PeriodicalIF":5.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0017931023008906/pdfft?md5=76a9016aa748d5095bebfdef208123b7&pid=1-s2.0-S0017931023008906-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A multiobjective optimization of 3D - slot jet configuration for enhancement of film cooling in an annular combustor liner\",\"authors\":\"Ananda Prasanna Revulagadda ,&nbsp;Rampada Rana ,&nbsp;Batchu Suresh ,&nbsp;C. Balaji ,&nbsp;Arvind Pattamatta\",\"doi\":\"10.1016/j.ijheatmasstransfer.2023.124745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study reports the results of a combined experimental and numerical investigation of the performance of a three-dimensional film cooling slot configuration and its optimization using an evolutionary-based genetic algorithm. The primary objective of the optimization is to maximize the area-averaged film cooling effectiveness (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>) and minimize its standard deviation (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span>) at a fixed coolant mass flux for a single liner. The experimental study is conducted on flow and heat transfer characteristics to validate the numerical model under laboratory conditions (low temperature and pressure). A design space is created using the Latin hypercube sampling technique, and it is solved using steady-state RANS simulations with the validated numerical model to estimate the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> under actual engine conditions (high temperature and pressure). A surrogate model is developed using the kriging technique to predict the objective functions with the geometrical parameters of the slot. Following this, the optimum configuration is identified using the genetic algorithm. The geometrical parameters are slot jet diameter (<em>d</em>), slot jet pitch (<em>p</em>), lip taper angle (<em>α</em>), and lip length (<em>L</em>). The numerical results show that the optimum configuration outperforms the two reference configurations of the baseline combustor. At a blowing ratio <span><math><mo>(</mo><mi>B</mi><mi>R</mi><mo>)</mo></math></span> of 1, the optimum configuration enhances the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> by 8% and reduces the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> by 6.6% compared to reference -1 configuration. Similarly, compared to reference -2, the optimum configuration enhances the <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>a</mi><mi>d</mi><mo>.</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> by 19.8% and reduces the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> by 5.2.%. Furthermore, under actual engine conditions, a numerical study is conducted on a subsequent row of liners to determine the optimum length of the cooling ring. The numerical results show that the optimum slot configuration cools an additional liner length (<span><math><mi>G</mi><mo>/</mo><mi>S</mi></math></span>) of 5.5 compared to the reference-1 slot and results in a reduction of one pair of cooling rings in the combustor, which contributes to a 16.6% less coolant mass flux.</p></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"218 \",\"pages\":\"Article 124745\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0017931023008906/pdfft?md5=76a9016aa748d5095bebfdef208123b7&pid=1-s2.0-S0017931023008906-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931023008906\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931023008906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了三维气膜冷却槽结构性能的实验和数值研究结果,并利用基于进化的遗传算法对其进行了优化。优化的主要目标是在固定冷却剂质量流量下,最大限度地提高单衬板的面积平均气膜冷却效率(ηad.avg),并使其标准差(ση)最小。为了验证数值模型在实验室条件下(低温低压)的流动和换热特性。利用拉丁超立方体采样技术建立设计空间,并利用稳态RANS仿真求解该设计空间。实际发动机条件下(高温高压)的Avg和ση。利用kriging技术建立了一个代理模型,用槽的几何参数来预测目标函数。然后,使用遗传算法确定最佳配置。几何参数分别为:狭缝射流直径(d)、狭缝射流节距(p)、唇瓣锥角(α)和唇瓣长度(L)。数值计算结果表明,优化后的构型优于基准燃烧室的两种参考构型。当吹气比(BR)为1时,最优的配置可以提高η。与参考配置-1相比,Avg降低了8%,ση降低了6.6%。同样,与文献-2相比,优化配置提高了增益。Avg降低19.8%,ση降低5.2%。此外,在实际发动机条件下,对后续的衬套进行了数值研究,以确定冷却环的最佳长度。数值计算结果表明,与参考方案1相比,优化后的槽形结构可使燃烧室内的冷却环减少一对,冷却剂质量通量减少16.6%,增加了5.5 G/S的冷却长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiobjective optimization of 3D - slot jet configuration for enhancement of film cooling in an annular combustor liner

This study reports the results of a combined experimental and numerical investigation of the performance of a three-dimensional film cooling slot configuration and its optimization using an evolutionary-based genetic algorithm. The primary objective of the optimization is to maximize the area-averaged film cooling effectiveness (ηad.avg) and minimize its standard deviation (ση) at a fixed coolant mass flux for a single liner. The experimental study is conducted on flow and heat transfer characteristics to validate the numerical model under laboratory conditions (low temperature and pressure). A design space is created using the Latin hypercube sampling technique, and it is solved using steady-state RANS simulations with the validated numerical model to estimate the ηad.avg and ση under actual engine conditions (high temperature and pressure). A surrogate model is developed using the kriging technique to predict the objective functions with the geometrical parameters of the slot. Following this, the optimum configuration is identified using the genetic algorithm. The geometrical parameters are slot jet diameter (d), slot jet pitch (p), lip taper angle (α), and lip length (L). The numerical results show that the optimum configuration outperforms the two reference configurations of the baseline combustor. At a blowing ratio (BR) of 1, the optimum configuration enhances the ηad.avg by 8% and reduces the ση by 6.6% compared to reference -1 configuration. Similarly, compared to reference -2, the optimum configuration enhances the ηad.avg by 19.8% and reduces the ση by 5.2.%. Furthermore, under actual engine conditions, a numerical study is conducted on a subsequent row of liners to determine the optimum length of the cooling ring. The numerical results show that the optimum slot configuration cools an additional liner length (G/S) of 5.5 compared to the reference-1 slot and results in a reduction of one pair of cooling rings in the combustor, which contributes to a 16.6% less coolant mass flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信