影响微通道中超临界转变的流动形式和传热机制

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Trevor A. Whitaker, Joseph W. Cochran, Jacob D. Hochhalter, Sameer R. Rao
{"title":"影响微通道中超临界转变的流动形式和传热机制","authors":"Trevor A. Whitaker,&nbsp;Joseph W. Cochran,&nbsp;Jacob D. Hochhalter,&nbsp;Sameer R. Rao","doi":"10.1016/j.ijheatmasstransfer.2023.124749","DOIUrl":null,"url":null,"abstract":"<div><p>Supercritical carbon dioxide (sCO<sub>2</sub>) exhibits unique thermophysical and transport properties, which have the potential to enhance a wide range of thermal systems. Significant property variations accompanying the pseudocritical transition preclude accurate and generalized predictions of heat transfer, particularly at the microscale. A novel method for investigating fundamental fluid flow and heat transfer mechanisms through heat transfer coefficient measurements and side-view high-speed (8000 fps) schlieren imaging was developed. Experiments are conducted in a square microchannel (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>=</mo><mn>500</mn><mspace></mspace><mrow><mi>μ</mi><mtext>m</mtext></mrow></math></span>) at reduced pressure near unity (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><mn>1.05</mn></math></span>) over a range of heat and mass fluxes (<span><math><msubsup><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mn>1.3</mn><mo>−</mo><mn>82.6</mn><mtext> W</mtext><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>; <span><math><mi>G</mi><mo>=</mo><mn>280</mn><mo>−</mo><mn>1380</mn><mtext> kg</mtext><mspace></mspace><msup><mrow><mtext>m</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>s</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>). Non-uniform density profiles within the boundary layer and distinct, freely mixed liquid-like and gas-like packets at various stages of pseudocritical transition were observed. Three flow regimes were identified as a function of heat flux with unique convection boundary layer characteristics. Transport of liquid-like and the production of gas-like sCO<sub>2</sub> at the wall were found to be the primary mechanisms affecting heat transfer and were quantified using a modified form of the Richardson number. The experimental approach and mechanistic insight developed herein provide a basis for high-fidelity heat transfer models for the design of supercritical fluid systems.</p></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"218 ","pages":"Article 124749"},"PeriodicalIF":5.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0017931023008943/pdfft?md5=b04697c65345a4ac1868c4d17de71b68&pid=1-s2.0-S0017931023008943-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flow regimes and heat transfer mechanisms affecting supercritical transition in microchannels\",\"authors\":\"Trevor A. Whitaker,&nbsp;Joseph W. Cochran,&nbsp;Jacob D. Hochhalter,&nbsp;Sameer R. Rao\",\"doi\":\"10.1016/j.ijheatmasstransfer.2023.124749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercritical carbon dioxide (sCO<sub>2</sub>) exhibits unique thermophysical and transport properties, which have the potential to enhance a wide range of thermal systems. Significant property variations accompanying the pseudocritical transition preclude accurate and generalized predictions of heat transfer, particularly at the microscale. A novel method for investigating fundamental fluid flow and heat transfer mechanisms through heat transfer coefficient measurements and side-view high-speed (8000 fps) schlieren imaging was developed. Experiments are conducted in a square microchannel (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>=</mo><mn>500</mn><mspace></mspace><mrow><mi>μ</mi><mtext>m</mtext></mrow></math></span>) at reduced pressure near unity (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><mn>1.05</mn></math></span>) over a range of heat and mass fluxes (<span><math><msubsup><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mn>1.3</mn><mo>−</mo><mn>82.6</mn><mtext> W</mtext><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>; <span><math><mi>G</mi><mo>=</mo><mn>280</mn><mo>−</mo><mn>1380</mn><mtext> kg</mtext><mspace></mspace><msup><mrow><mtext>m</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>s</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>). Non-uniform density profiles within the boundary layer and distinct, freely mixed liquid-like and gas-like packets at various stages of pseudocritical transition were observed. Three flow regimes were identified as a function of heat flux with unique convection boundary layer characteristics. Transport of liquid-like and the production of gas-like sCO<sub>2</sub> at the wall were found to be the primary mechanisms affecting heat transfer and were quantified using a modified form of the Richardson number. The experimental approach and mechanistic insight developed herein provide a basis for high-fidelity heat transfer models for the design of supercritical fluid systems.</p></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"218 \",\"pages\":\"Article 124749\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0017931023008943/pdfft?md5=b04697c65345a4ac1868c4d17de71b68&pid=1-s2.0-S0017931023008943-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931023008943\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931023008943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

超临界二氧化碳(sCO2)表现出独特的热物理和输运性质,具有增强各种热系统的潜力。伴随赝临界转变的显著性质变化妨碍了对传热的准确和广义预测,特别是在微观尺度上。提出了一种通过传热系数测量和侧视高速(8000 fps)纹影成像来研究基本流体流动和传热机理的新方法。实验在一个方形微通道(Dh=500μm)中进行,在接近单位(PR=1.05)的减压条件下,温度和质量通量范围(qc″=1.3 ~ 82.6 Wcm−2;G = 280−1380 kgm−2 s−1)。在赝临界跃迁的各个阶段,观察到边界层内的非均匀密度分布和明显的、自由混合的类液体和类气体包。确定了具有独特对流边界层特征的热通量的三种流动形式。研究发现,壁面液态和气态sCO2的输送是影响传热的主要机制,并使用理查德森数的修正形式进行了量化。本文的实验方法和机理见解为超临界流体系统设计的高保真传热模型提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow regimes and heat transfer mechanisms affecting supercritical transition in microchannels

Supercritical carbon dioxide (sCO2) exhibits unique thermophysical and transport properties, which have the potential to enhance a wide range of thermal systems. Significant property variations accompanying the pseudocritical transition preclude accurate and generalized predictions of heat transfer, particularly at the microscale. A novel method for investigating fundamental fluid flow and heat transfer mechanisms through heat transfer coefficient measurements and side-view high-speed (8000 fps) schlieren imaging was developed. Experiments are conducted in a square microchannel (Dh=500μm) at reduced pressure near unity (PR=1.05) over a range of heat and mass fluxes (qc=1.382.6 Wcm2; G=2801380 kgm2s1). Non-uniform density profiles within the boundary layer and distinct, freely mixed liquid-like and gas-like packets at various stages of pseudocritical transition were observed. Three flow regimes were identified as a function of heat flux with unique convection boundary layer characteristics. Transport of liquid-like and the production of gas-like sCO2 at the wall were found to be the primary mechanisms affecting heat transfer and were quantified using a modified form of the Richardson number. The experimental approach and mechanistic insight developed herein provide a basis for high-fidelity heat transfer models for the design of supercritical fluid systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信