果蝠作为高致病性亨尼帕病毒的天然宿主:抗病毒防御和病毒耐受性之间的平衡

IF 5.7 2区 医学 Q1 VIROLOGY
Said Mougari, Claudia Gonzalez, Olivier Reynard, Branka Horvat
{"title":"果蝠作为高致病性亨尼帕病毒的天然宿主:抗病毒防御和病毒耐受性之间的平衡","authors":"Said Mougari,&nbsp;Claudia Gonzalez,&nbsp;Olivier Reynard,&nbsp;Branka Horvat","doi":"10.1016/j.coviro.2022.101228","DOIUrl":null,"url":null,"abstract":"<div><p>Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra and Nipah viruses of <em>Henipavirus</em> genus, which are highly pathogenic in humans and numerous other mammalian species. Despite being infected, bats present limited signs of disease but still retain the ability to transmit the infection to other susceptible hosts, presenting thus a permanent source of new viral outbreaks. Different mechanisms have evolved in fruit bats permitting them to efficiently control the <em>Henipavirus</em> infection. These mechanisms likely allow bats to establish an adequate equilibrium between viral tolerance and antiviral defense, enabling them thus to avoid both uncontrollable virus expansion as well as immunopathology linked to excessive antiviral responses.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000372/pdfft?md5=11dd534604a830e51f63c39e0726f6d3&pid=1-s2.0-S1879625722000372-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance\",\"authors\":\"Said Mougari,&nbsp;Claudia Gonzalez,&nbsp;Olivier Reynard,&nbsp;Branka Horvat\",\"doi\":\"10.1016/j.coviro.2022.101228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra and Nipah viruses of <em>Henipavirus</em> genus, which are highly pathogenic in humans and numerous other mammalian species. Despite being infected, bats present limited signs of disease but still retain the ability to transmit the infection to other susceptible hosts, presenting thus a permanent source of new viral outbreaks. Different mechanisms have evolved in fruit bats permitting them to efficiently control the <em>Henipavirus</em> infection. These mechanisms likely allow bats to establish an adequate equilibrium between viral tolerance and antiviral defense, enabling them thus to avoid both uncontrollable virus expansion as well as immunopathology linked to excessive antiviral responses.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1879625722000372/pdfft?md5=11dd534604a830e51f63c39e0726f6d3&pid=1-s2.0-S1879625722000372-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879625722000372\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625722000372","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 6

摘要

蝙蝠是许多人畜共患病毒的天然宿主,包括亨德拉病毒和尼帕病毒属的亨德拉病毒和尼帕病毒,这两种病毒对人类和许多其他哺乳动物具有高致病性。尽管受到感染,蝙蝠表现出有限的疾病迹象,但仍保留将感染传播给其他易感宿主的能力,因此成为新病毒暴发的永久来源。果蝠进化出了不同的机制,使它们能够有效地控制亨尼帕病毒感染。这些机制可能允许蝙蝠在病毒耐受性和抗病毒防御之间建立适当的平衡,从而使它们能够避免无法控制的病毒扩增以及与过度抗病毒反应相关的免疫病理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra and Nipah viruses of Henipavirus genus, which are highly pathogenic in humans and numerous other mammalian species. Despite being infected, bats present limited signs of disease but still retain the ability to transmit the infection to other susceptible hosts, presenting thus a permanent source of new viral outbreaks. Different mechanisms have evolved in fruit bats permitting them to efficiently control the Henipavirus infection. These mechanisms likely allow bats to establish an adequate equilibrium between viral tolerance and antiviral defense, enabling them thus to avoid both uncontrollable virus expansion as well as immunopathology linked to excessive antiviral responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信