迈向人工智能驱动的长寿研究:综述。

IF 3.3 Q2 GERIATRICS & GERONTOLOGY
Frontiers in aging Pub Date : 2023-03-01 eCollection Date: 2023-01-01 DOI:10.3389/fragi.2023.1057204
Nicola Marino, Guido Putignano, Simone Cappilli, Emmanuele Chersoni, Antonella Santuccione, Giuliana Calabrese, Evelyne Bischof, Quentin Vanhaelen, Alex Zhavoronkov, Bryan Scarano, Alessandro D Mazzotta, Enrico Santus
{"title":"迈向人工智能驱动的长寿研究:综述。","authors":"Nicola Marino, Guido Putignano, Simone Cappilli, Emmanuele Chersoni, Antonella Santuccione, Giuliana Calabrese, Evelyne Bischof, Quentin Vanhaelen, Alex Zhavoronkov, Bryan Scarano, Alessandro D Mazzotta, Enrico Santus","doi":"10.3389/fragi.2023.1057204","DOIUrl":null,"url":null,"abstract":"<p><p>While in the past technology has mostly been utilized to store information about the structural configuration of proteins and molecules for research and medical purposes, Artificial Intelligence is nowadays able to learn from the existing data how to predict and model properties and interactions, revealing important knowledge about complex biological processes, such as aging. Modern technologies, moreover, can rely on a broader set of information, including those derived from the next-generation sequencing (e.g., proteomics, lipidomics, and other omics), to understand the interactions between human body and the external environment. This is especially relevant as external factors have been shown to have a key role in aging. As the field of computational systems biology keeps improving and new biomarkers of aging are being developed, artificial intelligence promises to become a major ally of aging research.</p>","PeriodicalId":73061,"journal":{"name":"Frontiers in aging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards AI-driven longevity research: An overview.\",\"authors\":\"Nicola Marino, Guido Putignano, Simone Cappilli, Emmanuele Chersoni, Antonella Santuccione, Giuliana Calabrese, Evelyne Bischof, Quentin Vanhaelen, Alex Zhavoronkov, Bryan Scarano, Alessandro D Mazzotta, Enrico Santus\",\"doi\":\"10.3389/fragi.2023.1057204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While in the past technology has mostly been utilized to store information about the structural configuration of proteins and molecules for research and medical purposes, Artificial Intelligence is nowadays able to learn from the existing data how to predict and model properties and interactions, revealing important knowledge about complex biological processes, such as aging. Modern technologies, moreover, can rely on a broader set of information, including those derived from the next-generation sequencing (e.g., proteomics, lipidomics, and other omics), to understand the interactions between human body and the external environment. This is especially relevant as external factors have been shown to have a key role in aging. As the field of computational systems biology keeps improving and new biomarkers of aging are being developed, artificial intelligence promises to become a major ally of aging research.</p>\",\"PeriodicalId\":73061,\"journal\":{\"name\":\"Frontiers in aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fragi.2023.1057204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fragi.2023.1057204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去,技术主要用于存储蛋白质和分子结构配置信息,以用于研究和医疗目的,而如今,人工智能能够从现有数据中学习如何预测和模拟特性和相互作用,从而揭示有关衰老等复杂生物过程的重要知识。此外,现代技术还可以依靠更广泛的信息,包括从下一代测序(如蛋白质组学、脂质组学和其他 omics)中获得的信息,来了解人体与外部环境之间的相互作用。这一点尤为重要,因为外部因素已被证明在衰老中起着关键作用。随着计算系统生物学领域的不断进步和新的衰老生物标志物的开发,人工智能有望成为衰老研究的主要盟友。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards AI-driven longevity research: An overview.

Towards AI-driven longevity research: An overview.

Towards AI-driven longevity research: An overview.

Towards AI-driven longevity research: An overview.

While in the past technology has mostly been utilized to store information about the structural configuration of proteins and molecules for research and medical purposes, Artificial Intelligence is nowadays able to learn from the existing data how to predict and model properties and interactions, revealing important knowledge about complex biological processes, such as aging. Modern technologies, moreover, can rely on a broader set of information, including those derived from the next-generation sequencing (e.g., proteomics, lipidomics, and other omics), to understand the interactions between human body and the external environment. This is especially relevant as external factors have been shown to have a key role in aging. As the field of computational systems biology keeps improving and new biomarkers of aging are being developed, artificial intelligence promises to become a major ally of aging research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信