用凝聚法制备的红辣椒胶囊的纳米食品结构,以提高类胡萝卜素的贮存稳定性

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
E. Flores-Andrade , M. Jiménez-Fernández , C.I. Beristain , E. Azuara , G.F. Gutiérrez-López , L. Alamilla-Beltrán , L.A. Pascual-Pineda
{"title":"用凝聚法制备的红辣椒胶囊的纳米食品结构,以提高类胡萝卜素的贮存稳定性","authors":"E. Flores-Andrade ,&nbsp;M. Jiménez-Fernández ,&nbsp;C.I. Beristain ,&nbsp;E. Azuara ,&nbsp;G.F. Gutiérrez-López ,&nbsp;L. Alamilla-Beltrán ,&nbsp;L.A. Pascual-Pineda","doi":"10.1016/j.foostr.2023.100354","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, paprika carotenoids<span><span> were encapsulated by coacervation with a nanostructured material (NE) prepared with alginate/zeolite and another non-nanostructured (AA) made only with alginate to study the effect of nanocavities in the microstructure on the energy interactions of adsorbed water and the chemical stability of carotenoids. Capsules were characterized through fractal analysis of image, water </span>sorption<span> isotherms, water melting point, thermodynamic properties, and chemical stability during storage. Surface fractal dimensions were between 2.75 and 2.8 for NE and were larger than those obtained for AA, which were between 2.57 and 2.7. NE capsules showed the endothermic fusion peak at −4.42 °C, while AA capsules around 0.97 °C. Adsorbed water enthalpies calculated from adsorption isotherms of the capsules showed the maximum stability of total carotenoids at the crossing of the integral and differential enthalpy intercross </span></span></span><sub>(</sub><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span><span> = 0.121 for AA and 0.443 for NE) and at the water adsorption at Langmuir-type primary sites. NE capsules improved carotenoid retention two-fold compared to AA after 63 days of storage. These results confirmed that controlling the nanoporous at the food microstructure improved the chemical stability of carotenoids during storage.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100354"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Food nanostructuring of paprika capsules obtained by coacervation for improving carotenoid storage stability\",\"authors\":\"E. Flores-Andrade ,&nbsp;M. Jiménez-Fernández ,&nbsp;C.I. Beristain ,&nbsp;E. Azuara ,&nbsp;G.F. Gutiérrez-López ,&nbsp;L. Alamilla-Beltrán ,&nbsp;L.A. Pascual-Pineda\",\"doi\":\"10.1016/j.foostr.2023.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this study, paprika carotenoids<span><span> were encapsulated by coacervation with a nanostructured material (NE) prepared with alginate/zeolite and another non-nanostructured (AA) made only with alginate to study the effect of nanocavities in the microstructure on the energy interactions of adsorbed water and the chemical stability of carotenoids. Capsules were characterized through fractal analysis of image, water </span>sorption<span> isotherms, water melting point, thermodynamic properties, and chemical stability during storage. Surface fractal dimensions were between 2.75 and 2.8 for NE and were larger than those obtained for AA, which were between 2.57 and 2.7. NE capsules showed the endothermic fusion peak at −4.42 °C, while AA capsules around 0.97 °C. Adsorbed water enthalpies calculated from adsorption isotherms of the capsules showed the maximum stability of total carotenoids at the crossing of the integral and differential enthalpy intercross </span></span></span><sub>(</sub><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span><span> = 0.121 for AA and 0.443 for NE) and at the water adsorption at Langmuir-type primary sites. NE capsules improved carotenoid retention two-fold compared to AA after 63 days of storage. These results confirmed that controlling the nanoporous at the food microstructure improved the chemical stability of carotenoids during storage.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"38 \",\"pages\":\"Article 100354\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329123000473\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000473","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以海藻酸盐/沸石制备的纳米结构材料(NE)和仅海藻酸盐制备的非纳米结构材料(AA)为包封材料,研究微观结构中纳米空腔对吸附水的能量相互作用和类胡萝卜素化学稳定性的影响。通过图像分形分析、水吸附等温线、水熔点、热力学性质和储存过程中的化学稳定性对胶囊进行了表征。NE的表面分形维数在2.75 ~ 2.8之间,AA的表面分形维数在2.57 ~ 2.7之间。NE胶囊在- 4.42°C时出现吸热融合峰,AA胶囊在0.97°C左右出现吸热融合峰。由吸附等温线计算的吸附水焓值表明,总类胡萝卜素在积分和微分焓交联的交叉点(AA = 0.121, NE = 0.443)和langmuir型初级位点的水吸附处的稳定性最大。贮存63天后,NE胶囊的类胡萝卜素保留率比AA提高了两倍。这些结果证实,在食品微观结构上控制纳米孔可以改善类胡萝卜素在储存过程中的化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Food nanostructuring of paprika capsules obtained by coacervation for improving carotenoid storage stability

Food nanostructuring of paprika capsules obtained by coacervation for improving carotenoid storage stability

In this study, paprika carotenoids were encapsulated by coacervation with a nanostructured material (NE) prepared with alginate/zeolite and another non-nanostructured (AA) made only with alginate to study the effect of nanocavities in the microstructure on the energy interactions of adsorbed water and the chemical stability of carotenoids. Capsules were characterized through fractal analysis of image, water sorption isotherms, water melting point, thermodynamic properties, and chemical stability during storage. Surface fractal dimensions were between 2.75 and 2.8 for NE and were larger than those obtained for AA, which were between 2.57 and 2.7. NE capsules showed the endothermic fusion peak at −4.42 °C, while AA capsules around 0.97 °C. Adsorbed water enthalpies calculated from adsorption isotherms of the capsules showed the maximum stability of total carotenoids at the crossing of the integral and differential enthalpy intercross (aw = 0.121 for AA and 0.443 for NE) and at the water adsorption at Langmuir-type primary sites. NE capsules improved carotenoid retention two-fold compared to AA after 63 days of storage. These results confirmed that controlling the nanoporous at the food microstructure improved the chemical stability of carotenoids during storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信