{"title":"基于分位数的方差分析:在析因设计中推断多变量数据的新工具","authors":"Marléne Baumeister , Marc Ditzhaus , Markus Pauly","doi":"10.1016/j.jmva.2023.105246","DOIUrl":null,"url":null,"abstract":"<div><p>Multivariate analysis-of-variance (MANOVA) is a well established tool to examine multivariate endpoints. While classical approaches depend on restrictive assumptions like normality and homogeneity, there is a recent trend to more general and flexible procedures. In this paper, we proceed on this path, but do not follow the typical mean-focused perspective. Instead we consider general quantiles, in particular the median, for a more robust multivariate analysis. The resulting methodology is applicable for all kind of factorial designs and shown to be asymptotically valid. Our theoretical results are complemented by an extensive simulation study for small and moderate sample sizes. An illustrative data analysis is also presented.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000921/pdfft?md5=1d25d366a55a9ade017b7d42c7b49a4c&pid=1-s2.0-S0047259X23000921-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs\",\"authors\":\"Marléne Baumeister , Marc Ditzhaus , Markus Pauly\",\"doi\":\"10.1016/j.jmva.2023.105246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multivariate analysis-of-variance (MANOVA) is a well established tool to examine multivariate endpoints. While classical approaches depend on restrictive assumptions like normality and homogeneity, there is a recent trend to more general and flexible procedures. In this paper, we proceed on this path, but do not follow the typical mean-focused perspective. Instead we consider general quantiles, in particular the median, for a more robust multivariate analysis. The resulting methodology is applicable for all kind of factorial designs and shown to be asymptotically valid. Our theoretical results are complemented by an extensive simulation study for small and moderate sample sizes. An illustrative data analysis is also presented.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000921/pdfft?md5=1d25d366a55a9ade017b7d42c7b49a4c&pid=1-s2.0-S0047259X23000921-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000921\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000921","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs
Multivariate analysis-of-variance (MANOVA) is a well established tool to examine multivariate endpoints. While classical approaches depend on restrictive assumptions like normality and homogeneity, there is a recent trend to more general and flexible procedures. In this paper, we proceed on this path, but do not follow the typical mean-focused perspective. Instead we consider general quantiles, in particular the median, for a more robust multivariate analysis. The resulting methodology is applicable for all kind of factorial designs and shown to be asymptotically valid. Our theoretical results are complemented by an extensive simulation study for small and moderate sample sizes. An illustrative data analysis is also presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.