{"title":"圆柱绕流温度传感器恢复系数的实验测定。第1部分:不同雷诺数和马赫数恢复系数的测定","authors":"Andreas Huster, Simon Paymal","doi":"10.1016/j.apples.2023.100157","DOIUrl":null,"url":null,"abstract":"<div><p>It is known in the literature that in the case of compressible fluids, higher values than the fluid temperature are displayed on temperature sensors, partly due to the accumulation point flow. Depending on the operating point, this can be several degrees Celsius. One possibility of consideration is the so-called recovery factor. There are various theoretical approaches and models that have been transferred on the basis of measurement on the flat plate. In some cases, the recovery factor is only defined as a function of the Prandtl number. A test bench has been developed that can be used to determine the recovery factor of cylindrical, quere-flowed temperature sensors. Up to Ma numbers of about 0.5, sensors with different diameters, and thus different Reynolds numbers, were measured and the recovery factors were calculated. There is a pronounced dependence on both the Ma number and the <em>Re</em> number and the recovery factor is not constant. An empirical equation based on the measurement results is given, with which the recovery factor can be determined as a function of the fluid, the Mach- and Reynolds-numbers and thus a more accurate calculation of the real fluid temperature is possible.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"16 ","pages":"Article 100157"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496823000328/pdfft?md5=15d84682c89fa29a3ce927be82d63e6a&pid=1-s2.0-S2666496823000328-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental determination of the recovery factor on cylindrically flow-around temperature sensors Part 1: Determination of the recovery factor for different Reynolds- and Mach-Numbers\",\"authors\":\"Andreas Huster, Simon Paymal\",\"doi\":\"10.1016/j.apples.2023.100157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known in the literature that in the case of compressible fluids, higher values than the fluid temperature are displayed on temperature sensors, partly due to the accumulation point flow. Depending on the operating point, this can be several degrees Celsius. One possibility of consideration is the so-called recovery factor. There are various theoretical approaches and models that have been transferred on the basis of measurement on the flat plate. In some cases, the recovery factor is only defined as a function of the Prandtl number. A test bench has been developed that can be used to determine the recovery factor of cylindrical, quere-flowed temperature sensors. Up to Ma numbers of about 0.5, sensors with different diameters, and thus different Reynolds numbers, were measured and the recovery factors were calculated. There is a pronounced dependence on both the Ma number and the <em>Re</em> number and the recovery factor is not constant. An empirical equation based on the measurement results is given, with which the recovery factor can be determined as a function of the fluid, the Mach- and Reynolds-numbers and thus a more accurate calculation of the real fluid temperature is possible.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"16 \",\"pages\":\"Article 100157\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666496823000328/pdfft?md5=15d84682c89fa29a3ce927be82d63e6a&pid=1-s2.0-S2666496823000328-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496823000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496823000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental determination of the recovery factor on cylindrically flow-around temperature sensors Part 1: Determination of the recovery factor for different Reynolds- and Mach-Numbers
It is known in the literature that in the case of compressible fluids, higher values than the fluid temperature are displayed on temperature sensors, partly due to the accumulation point flow. Depending on the operating point, this can be several degrees Celsius. One possibility of consideration is the so-called recovery factor. There are various theoretical approaches and models that have been transferred on the basis of measurement on the flat plate. In some cases, the recovery factor is only defined as a function of the Prandtl number. A test bench has been developed that can be used to determine the recovery factor of cylindrical, quere-flowed temperature sensors. Up to Ma numbers of about 0.5, sensors with different diameters, and thus different Reynolds numbers, were measured and the recovery factors were calculated. There is a pronounced dependence on both the Ma number and the Re number and the recovery factor is not constant. An empirical equation based on the measurement results is given, with which the recovery factor can be determined as a function of the fluid, the Mach- and Reynolds-numbers and thus a more accurate calculation of the real fluid temperature is possible.