离子液体溶剂碳捕获工艺的设计与优化

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kyeongjun Seo, Thomas F Edgar, Mark A Stadtherr, Michael Baldea
{"title":"离子液体溶剂碳捕获工艺的设计与优化","authors":"Kyeongjun Seo,&nbsp;Thomas F Edgar,&nbsp;Mark A Stadtherr,&nbsp;Michael Baldea","doi":"10.1016/j.coche.2023.100978","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing carbon dioxide<span> emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.</span></p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"42 ","pages":"Article 100978"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of carbon capture processes using ionic liquid solvents\",\"authors\":\"Kyeongjun Seo,&nbsp;Thomas F Edgar,&nbsp;Mark A Stadtherr,&nbsp;Michael Baldea\",\"doi\":\"10.1016/j.coche.2023.100978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing carbon dioxide<span> emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.</span></p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"42 \",\"pages\":\"Article 100978\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000825\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳排放量的增加和由此导致的全球变暖是一个严重的环境问题。离子液体由于其良好的化学和物理性质,近年来作为一种有前途的碳捕获吸收剂而受到人们的关注。因此,有必要为基于il的碳捕获过程的设计和运行开发过程建模和数学优化技术,以确定最佳设计和运行。本文综述了利用ILs对碳捕集装置进行建模和优化的最新进展。我们专注于流程模拟,非线性动力学,工厂负荷和能源价格的变化,以及多尺度设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of carbon capture processes using ionic liquid solvents

Increasing carbon dioxide emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信