碱水电解:电解液中含铁还是不含铁?

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Matheus T de Groot
{"title":"碱水电解:电解液中含铁还是不含铁?","authors":"Matheus T de Groot","doi":"10.1016/j.coche.2023.100981","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of iron in the electrolyte has a significant impact on the performance of the electrodes in alkaline water electrolysis. For nickel-based anodes, the presence of iron is needed to achieve and maintain low overpotentials in the oxygen evolution reaction (OER). In contrast, in hydrogen evolution, the presence of iron can lead to deactivation of noble metal-based cathodes, which are more active than non-noble metal cathodes. Since the catholyte and anolyte can mix through the porous separator, stack developers need to decide on the optimal iron content in their system. It seems most promising to focus further development on the ‘iron-rich’ system, also considering the costs of construction materials and water purification.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"42 ","pages":"Article 100981"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823000850/pdfft?md5=1fa5175e52d16f78a339ef4d87af54e6&pid=1-s2.0-S2211339823000850-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alkaline water electrolysis: with or without iron in the electrolyte?\",\"authors\":\"Matheus T de Groot\",\"doi\":\"10.1016/j.coche.2023.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of iron in the electrolyte has a significant impact on the performance of the electrodes in alkaline water electrolysis. For nickel-based anodes, the presence of iron is needed to achieve and maintain low overpotentials in the oxygen evolution reaction (OER). In contrast, in hydrogen evolution, the presence of iron can lead to deactivation of noble metal-based cathodes, which are more active than non-noble metal cathodes. Since the catholyte and anolyte can mix through the porous separator, stack developers need to decide on the optimal iron content in their system. It seems most promising to focus further development on the ‘iron-rich’ system, also considering the costs of construction materials and water purification.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"42 \",\"pages\":\"Article 100981\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000850/pdfft?md5=1fa5175e52d16f78a339ef4d87af54e6&pid=1-s2.0-S2211339823000850-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000850\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000850","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电解液中铁的存在对碱性电解中电极的性能有重要影响。对于镍基阳极,需要铁的存在来实现和维持析氧反应(OER)中的低过电位。相反,在析氢过程中,铁的存在会导致贵金属阴极失活,而贵金属阴极比非贵金属阴极更活跃。由于阴极电解质和阳极电解质可以通过多孔分离器混合,因此堆栈开发人员需要确定其系统中的最佳铁含量。考虑到建筑材料和水净化的成本,似乎最有希望将进一步发展的重点放在“富铁”系统上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alkaline water electrolysis: with or without iron in the electrolyte?

Alkaline water electrolysis: with or without iron in the electrolyte?

The presence of iron in the electrolyte has a significant impact on the performance of the electrodes in alkaline water electrolysis. For nickel-based anodes, the presence of iron is needed to achieve and maintain low overpotentials in the oxygen evolution reaction (OER). In contrast, in hydrogen evolution, the presence of iron can lead to deactivation of noble metal-based cathodes, which are more active than non-noble metal cathodes. Since the catholyte and anolyte can mix through the porous separator, stack developers need to decide on the optimal iron content in their system. It seems most promising to focus further development on the ‘iron-rich’ system, also considering the costs of construction materials and water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信