心电心律失常分类的深度学习方法综述

Q1 Engineering
Zahra Ebrahimi , Mohammad Loni , Masoud Daneshtalab , Arash Gharehbaghi
{"title":"心电心律失常分类的深度学习方法综述","authors":"Zahra Ebrahimi ,&nbsp;Mohammad Loni ,&nbsp;Masoud Daneshtalab ,&nbsp;Arash Gharehbaghi","doi":"10.1016/j.eswax.2020.100033","DOIUrl":null,"url":null,"abstract":"<div><p>Deep Learning (DL) has recently become a topic of study in different applications including healthcare, in which timely detection of anomalies on Electrocardiogram (ECG) can play a vital role in patient monitoring. This paper presents a comprehensive review study on the recent DL methods applied to the ECG signal for the classification purposes. This study considers various types of the DL methods such as Convolutional Neural Network (CNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). From the 75 studies reported within 2017 and 2018, CNN is dominantly observed as the suitable technique for feature extraction, seen in 52% of the studies. DL methods showed high accuracy in correct classification of Atrial Fibrillation (AF) (100%), Supraventricular Ectopic Beats (SVEB) (99.8%), and Ventricular Ectopic Beats (VEB) (99.7%) using the GRU/LSTM, CNN, and LSTM, respectively.</p></div>","PeriodicalId":36838,"journal":{"name":"Expert Systems with Applications: X","volume":"7 ","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eswax.2020.100033","citationCount":"221","resultStr":"{\"title\":\"A review on deep learning methods for ECG arrhythmia classification\",\"authors\":\"Zahra Ebrahimi ,&nbsp;Mohammad Loni ,&nbsp;Masoud Daneshtalab ,&nbsp;Arash Gharehbaghi\",\"doi\":\"10.1016/j.eswax.2020.100033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep Learning (DL) has recently become a topic of study in different applications including healthcare, in which timely detection of anomalies on Electrocardiogram (ECG) can play a vital role in patient monitoring. This paper presents a comprehensive review study on the recent DL methods applied to the ECG signal for the classification purposes. This study considers various types of the DL methods such as Convolutional Neural Network (CNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). From the 75 studies reported within 2017 and 2018, CNN is dominantly observed as the suitable technique for feature extraction, seen in 52% of the studies. DL methods showed high accuracy in correct classification of Atrial Fibrillation (AF) (100%), Supraventricular Ectopic Beats (SVEB) (99.8%), and Ventricular Ectopic Beats (VEB) (99.7%) using the GRU/LSTM, CNN, and LSTM, respectively.</p></div>\",\"PeriodicalId\":36838,\"journal\":{\"name\":\"Expert Systems with Applications: X\",\"volume\":\"7 \",\"pages\":\"Article 100033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eswax.2020.100033\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590188520300123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590188520300123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 221

摘要

深度学习(DL)最近已经成为包括医疗保健在内的不同应用领域的研究课题,其中及时检测心电图(ECG)异常可以在患者监护中发挥至关重要的作用。本文对近年来应用于心电信号分类的深度学习方法进行了综述。本研究考虑了各种类型的深度学习方法,如卷积神经网络(CNN)、深度信念网络(DBN)、循环神经网络(RNN)、长短期记忆(LSTM)和门控循环单元(GRU)。在2017年至2018年的75项研究中,CNN被认为是最合适的特征提取技术,占52%的研究。DL方法分别使用GRU/LSTM、CNN和LSTM对房颤(AF)、室上异位心跳(SVEB)(99.8%)和室性异位心跳(VEB)(99.7%)的正确分类准确率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on deep learning methods for ECG arrhythmia classification

Deep Learning (DL) has recently become a topic of study in different applications including healthcare, in which timely detection of anomalies on Electrocardiogram (ECG) can play a vital role in patient monitoring. This paper presents a comprehensive review study on the recent DL methods applied to the ECG signal for the classification purposes. This study considers various types of the DL methods such as Convolutional Neural Network (CNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). From the 75 studies reported within 2017 and 2018, CNN is dominantly observed as the suitable technique for feature extraction, seen in 52% of the studies. DL methods showed high accuracy in correct classification of Atrial Fibrillation (AF) (100%), Supraventricular Ectopic Beats (SVEB) (99.8%), and Ventricular Ectopic Beats (VEB) (99.7%) using the GRU/LSTM, CNN, and LSTM, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications: X
Expert Systems with Applications: X Engineering-Engineering (all)
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信