代谢表型在平衡竞争性能量需求能力中的作用。

IF 1.8 3区 生物学 Q3 PHYSIOLOGY
Michael J Lawrence, Hanna Scheuffele, Stephen B Beever, Peter E Holder, Colin J Garroway, Steven J Cooke, Timothy D Clark
{"title":"代谢表型在平衡竞争性能量需求能力中的作用。","authors":"Michael J Lawrence,&nbsp;Hanna Scheuffele,&nbsp;Stephen B Beever,&nbsp;Peter E Holder,&nbsp;Colin J Garroway,&nbsp;Steven J Cooke,&nbsp;Timothy D Clark","doi":"10.1086/722478","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractGiven the critical role of metabolism in the life history of all organisms, there is particular interest in understanding the relationship between individual metabolic phenotypes and the capacity to partition energy into competing life history traits. Such relationships could be predictive of individual phenotypic performances throughout life. Here, we were specifically interested in whether an individual fish's metabolic phenotype can shape its propensity to feed following a significant stressor (2-min exhaustive exercise challenge). Such a relationship would provide insight into previous intraspecific observations linking high metabolism with faster growth. Using a teleost fish, the barramundi (<i>Lates calcarifer</i>), we predicted that individuals with high standard metabolic rates (SMRs) and maximal metabolic rates (MMRs) would be faster to recover and resume feeding after exercise. Contrary to our prediction, neither SMR nor MMR was correlated with latency to feed after exercise (food was offered at 0.5, 1.5, 3, and 18 h after exercise). Only time after exercise and individual fish ID were significant predictors of latency to feed. Measurements of MMR from the same individuals (three measurements spaced 8-12 d apart) revealed a moderate degree of repeatability (<math><mrow><mi>R</mi><mo>=</mo><mn>0.319</mn></mrow></math>). We propose that interindividual differences in biochemical and endocrine processes may be more influential than whole-organism metabolic phenotype in mediating feeding latency after exercise.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"96 2","pages":"106-118"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Metabolic Phenotype in the Capacity to Balance Competing Energetic Demands.\",\"authors\":\"Michael J Lawrence,&nbsp;Hanna Scheuffele,&nbsp;Stephen B Beever,&nbsp;Peter E Holder,&nbsp;Colin J Garroway,&nbsp;Steven J Cooke,&nbsp;Timothy D Clark\",\"doi\":\"10.1086/722478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractGiven the critical role of metabolism in the life history of all organisms, there is particular interest in understanding the relationship between individual metabolic phenotypes and the capacity to partition energy into competing life history traits. Such relationships could be predictive of individual phenotypic performances throughout life. Here, we were specifically interested in whether an individual fish's metabolic phenotype can shape its propensity to feed following a significant stressor (2-min exhaustive exercise challenge). Such a relationship would provide insight into previous intraspecific observations linking high metabolism with faster growth. Using a teleost fish, the barramundi (<i>Lates calcarifer</i>), we predicted that individuals with high standard metabolic rates (SMRs) and maximal metabolic rates (MMRs) would be faster to recover and resume feeding after exercise. Contrary to our prediction, neither SMR nor MMR was correlated with latency to feed after exercise (food was offered at 0.5, 1.5, 3, and 18 h after exercise). Only time after exercise and individual fish ID were significant predictors of latency to feed. Measurements of MMR from the same individuals (three measurements spaced 8-12 d apart) revealed a moderate degree of repeatability (<math><mrow><mi>R</mi><mo>=</mo><mn>0.319</mn></mrow></math>). We propose that interindividual differences in biochemical and endocrine processes may be more influential than whole-organism metabolic phenotype in mediating feeding latency after exercise.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"96 2\",\"pages\":\"106-118\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/722478\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/722478","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要鉴于代谢在所有生物体的生活史中起着至关重要的作用,理解个体代谢表型与将能量分配到相互竞争的生活史性状之间的关系尤为重要。这种关系可以预测个体在一生中的表型表现。在这里,我们特别感兴趣的是,在一个显著的压力源(2分钟穷尽性运动挑战)后,单个鱼的代谢表型是否会影响其进食倾向。这种关系将为之前的种内观察提供见解,将高代谢与更快的生长联系起来。我们以硬骨鱼barramundi (Lates calcarifer)为研究对象,预测具有较高标准代谢率(SMRs)和最大代谢率(MMRs)的个体在运动后恢复和恢复进食的速度更快。与我们的预测相反,SMR和MMR都与运动后的进食潜伏期无关(分别在运动后0.5、1.5、3和18小时提供食物)。只有运动后的时间和单个鱼的ID是延迟进食的显著预测因子。对同一个体的MMR测量(3次测量间隔8-12 d)显示了中等程度的重复性(R=0.319)。我们认为,在调节运动后进食潜伏期方面,生物化学和内分泌过程的个体间差异可能比整体代谢表型更有影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Metabolic Phenotype in the Capacity to Balance Competing Energetic Demands.

AbstractGiven the critical role of metabolism in the life history of all organisms, there is particular interest in understanding the relationship between individual metabolic phenotypes and the capacity to partition energy into competing life history traits. Such relationships could be predictive of individual phenotypic performances throughout life. Here, we were specifically interested in whether an individual fish's metabolic phenotype can shape its propensity to feed following a significant stressor (2-min exhaustive exercise challenge). Such a relationship would provide insight into previous intraspecific observations linking high metabolism with faster growth. Using a teleost fish, the barramundi (Lates calcarifer), we predicted that individuals with high standard metabolic rates (SMRs) and maximal metabolic rates (MMRs) would be faster to recover and resume feeding after exercise. Contrary to our prediction, neither SMR nor MMR was correlated with latency to feed after exercise (food was offered at 0.5, 1.5, 3, and 18 h after exercise). Only time after exercise and individual fish ID were significant predictors of latency to feed. Measurements of MMR from the same individuals (three measurements spaced 8-12 d apart) revealed a moderate degree of repeatability (R=0.319). We propose that interindividual differences in biochemical and endocrine processes may be more influential than whole-organism metabolic phenotype in mediating feeding latency after exercise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信