Riesz空间中的Cantor-Bernstein型定理

Marek Wójtowicz
{"title":"Riesz空间中的Cantor-Bernstein型定理","authors":"Marek Wójtowicz","doi":"10.1016/1385-7258(88)90011-X","DOIUrl":null,"url":null,"abstract":"<div><p>We generalize the main result of [21] to Riesz spaces. Let <em>X</em> and <em>Y</em> be Riesz spaces with σ-complete Boolean algebras of projection bands. If <em>X</em> and <em>Y</em> are each Riesz isomorphic to a projection band of the other space then the spaces are Riesz isomorphic. As an application of the above theorem we give an example of non-Riesz isomorphic Banach lattices such that: (1) their order (= topological) duals are Riesz isomorphic and (2) each of them is Riesz isomorphic to a projection band of the other one.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 1","pages":"Pages 93-100"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(88)90011-X","citationCount":"9","resultStr":"{\"title\":\"On Cantor-Bernstein type theorems in Riesz spaces\",\"authors\":\"Marek Wójtowicz\",\"doi\":\"10.1016/1385-7258(88)90011-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We generalize the main result of [21] to Riesz spaces. Let <em>X</em> and <em>Y</em> be Riesz spaces with σ-complete Boolean algebras of projection bands. If <em>X</em> and <em>Y</em> are each Riesz isomorphic to a projection band of the other space then the spaces are Riesz isomorphic. As an application of the above theorem we give an example of non-Riesz isomorphic Banach lattices such that: (1) their order (= topological) duals are Riesz isomorphic and (2) each of them is Riesz isomorphic to a projection band of the other one.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 1\",\"pages\":\"Pages 93-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1385-7258(88)90011-X\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/138572588890011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/138572588890011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们将[21]的主要结果推广到Riesz空间。设X和Y是具有投影带的σ-完备布尔代数的Riesz空间。如果X和Y与另一个空间的投影带都是Riesz同构的,那么这两个空间就是Riesz同构的。作为上述定理的一个应用,我们给出了一个非Riesz同构Banach格的例子:(1)它们的序(=拓扑)对偶是Riesz同构的;(2)它们中的每一个都与另一个的投影带是Riesz同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Cantor-Bernstein type theorems in Riesz spaces

We generalize the main result of [21] to Riesz spaces. Let X and Y be Riesz spaces with σ-complete Boolean algebras of projection bands. If X and Y are each Riesz isomorphic to a projection band of the other space then the spaces are Riesz isomorphic. As an application of the above theorem we give an example of non-Riesz isomorphic Banach lattices such that: (1) their order (= topological) duals are Riesz isomorphic and (2) each of them is Riesz isomorphic to a projection band of the other one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信