阿贝尔群上的p进代表函数

G.F. Borm, W.H. Schikhof, H. de Vries
{"title":"阿贝尔群上的p进代表函数","authors":"G.F. Borm,&nbsp;W.H. Schikhof,&nbsp;H. de Vries","doi":"10.1016/1385-7258(88)90002-9","DOIUrl":null,"url":null,"abstract":"<div><p>The main result is the following. Let <em>G</em> be an abelian group, let <em>K</em> be an algebraically closed field of characteristic zero. Let <em>A</em> be any shift-invariant <em>K</em>-algebra with unit element of representative functions <em>G</em>→<em>K</em>, invariant under the antipode. Then the additive homomorphisms <em>G</em>→<em>K</em> in <em>A</em> together with the multiplicative homomorphisms <span><math><mtext>G→K</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> in A generate A (Theorem 1.1). In § 2 a few consequences for <em>p</em>-adic representative functions are discussed.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 1","pages":"Pages 9-13"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(88)90002-9","citationCount":"2","resultStr":"{\"title\":\"p-adic representative functions on abelian groups\",\"authors\":\"G.F. Borm,&nbsp;W.H. Schikhof,&nbsp;H. de Vries\",\"doi\":\"10.1016/1385-7258(88)90002-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main result is the following. Let <em>G</em> be an abelian group, let <em>K</em> be an algebraically closed field of characteristic zero. Let <em>A</em> be any shift-invariant <em>K</em>-algebra with unit element of representative functions <em>G</em>→<em>K</em>, invariant under the antipode. Then the additive homomorphisms <em>G</em>→<em>K</em> in <em>A</em> together with the multiplicative homomorphisms <span><math><mtext>G→K</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> in A generate A (Theorem 1.1). In § 2 a few consequences for <em>p</em>-adic representative functions are discussed.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 1\",\"pages\":\"Pages 9-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1385-7258(88)90002-9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/1385725888900029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1385725888900029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主要结果如下。设G为一个阿贝尔群,设K为特征为零的代数闭域。设A是任意具有代表函数G→K的单位元的移不变K代数,在对映下不变。则A中的加性同态G→K与A中的乘性同态G→K *生成A(定理1.1)。在§2中讨论了p进表示函数的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-adic representative functions on abelian groups

The main result is the following. Let G be an abelian group, let K be an algebraically closed field of characteristic zero. Let A be any shift-invariant K-algebra with unit element of representative functions GK, invariant under the antipode. Then the additive homomorphisms GK in A together with the multiplicative homomorphisms G→K in A generate A (Theorem 1.1). In § 2 a few consequences for p-adic representative functions are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信