lipschitz型极大函数及其光滑性空间

Burkhard Lenze
{"title":"lipschitz型极大函数及其光滑性空间","authors":"Burkhard Lenze","doi":"10.1016/1385-7258(88)90007-8","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent monograph (cf. No. 293 of the Memoirs of the Amer. Math. Soc. 47 (1984)) DeVore and Sharpley study maximal functions of integral type and their related smoothness spaces. One of their central results gives an embedding theorem for the smoothness spaces in terms of Besov spaces. In this paper we consider the related problem when the Besov spaces are substituted by the so-called A-spaces introduced by Popov (take the τ-modulus instead of the ω-modulus). We will define Lipschitz-type maximal functions whose smoothness spaces satisfy a corresponding embedding theorem in terms of <em>A</em>-spaces. By well-known results new insights can only be expected for functions satisfying low order smoothness conditions and, therefore, only function spaces generated by first order differences are considered.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 1","pages":"Pages 53-63"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(88)90007-8","citationCount":"126","resultStr":"{\"title\":\"On Lipschitz-type maximal functions and their smoothness spaces\",\"authors\":\"Burkhard Lenze\",\"doi\":\"10.1016/1385-7258(88)90007-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a recent monograph (cf. No. 293 of the Memoirs of the Amer. Math. Soc. 47 (1984)) DeVore and Sharpley study maximal functions of integral type and their related smoothness spaces. One of their central results gives an embedding theorem for the smoothness spaces in terms of Besov spaces. In this paper we consider the related problem when the Besov spaces are substituted by the so-called A-spaces introduced by Popov (take the τ-modulus instead of the ω-modulus). We will define Lipschitz-type maximal functions whose smoothness spaces satisfy a corresponding embedding theorem in terms of <em>A</em>-spaces. By well-known results new insights can only be expected for functions satisfying low order smoothness conditions and, therefore, only function spaces generated by first order differences are considered.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 1\",\"pages\":\"Pages 53-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1385-7258(88)90007-8\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/1385725888900078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1385725888900078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

摘要

在最近的一本专著(参见《美国人回忆录》第293号)中。数学。DeVore和Sharpley研究了积分型的极大函数及其相关的光滑空间。他们的一个中心结果给出了Besov空间中光滑空间的嵌入定理。本文考虑了用波波夫引入的所谓a -空间(取τ-模代替ω-模)代替Besov空间时的相关问题。我们将定义lipschitz型极大函数,其平滑空间在a空间中满足相应的嵌入定理。众所周知的结果只能对满足低阶平滑条件的函数产生新的见解,因此,只考虑由一阶差分产生的函数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Lipschitz-type maximal functions and their smoothness spaces

In a recent monograph (cf. No. 293 of the Memoirs of the Amer. Math. Soc. 47 (1984)) DeVore and Sharpley study maximal functions of integral type and their related smoothness spaces. One of their central results gives an embedding theorem for the smoothness spaces in terms of Besov spaces. In this paper we consider the related problem when the Besov spaces are substituted by the so-called A-spaces introduced by Popov (take the τ-modulus instead of the ω-modulus). We will define Lipschitz-type maximal functions whose smoothness spaces satisfy a corresponding embedding theorem in terms of A-spaces. By well-known results new insights can only be expected for functions satisfying low order smoothness conditions and, therefore, only function spaces generated by first order differences are considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信