Yanru Li, Lei Zhong, Sha Jiang, Yutong Wang, Binyao Huang, Guotao Xiang, Li Li, Yongjie Wang, Chuan Jing, Xianju Zhou
{"title":"基于Pr3+和Bi3+共掺CaNb2O6荧光粉的发光比例温度传感","authors":"Yanru Li, Lei Zhong, Sha Jiang, Yutong Wang, Binyao Huang, Guotao Xiang, Li Li, Yongjie Wang, Chuan Jing, Xianju Zhou","doi":"10.1016/j.jlumin.2023.120300","DOIUrl":null,"url":null,"abstract":"<div><p>The ratiometric luminescent thermometry based on dual-emission centers can effectively overcome the limitations of temperature sensing based on thermally coupled levels. Herein, Bi<sup>3+</sup> and Pr<sup>3+</sup> co-doped CaNb<sub>2</sub>O<sub>6</sub> phosphors were prepared by high-temperature solid-phase reactions, and crystal structural and photoluminescence were characterized. Then the luminescent thermometric properties of the obtained samples were studied, and the maximum absolute and relative sensitivity of the optimal sample (CaNb<sub>2</sub>O<sub>6</sub>: 0.5%Bi<sup>3+</sup>/0.5%Pr<sup>3+</sup> phosphor) achieved are 0.09 K<sup>−1</sup> @ 528 K and 2.17 % K<sup>−1</sup> @ 453 K, respectively. Furthermore, the luminescence of CaNb<sub>2</sub>O<sub>6</sub>: 0.5%Bi<sup>3+</sup>/0.5%Pr<sup>3+</sup> phosphor transforms remarkably from blue to red as the temperature rises, which can be adopted to monitor the ambient temperature via the glow color of the phosphor. To sum up, Bi<sup>3+</sup> and Pr<sup>3+</sup> co-doped CaNb<sub>2</sub>O<sub>6</sub> phosphors have been shown to have good thermosensitive and thermochromic characteristics.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"266 ","pages":"Article 120300"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Luminescent ratiometric temperature sensing based on Pr3+ and Bi3+ co-doped CaNb2O6 phosphors\",\"authors\":\"Yanru Li, Lei Zhong, Sha Jiang, Yutong Wang, Binyao Huang, Guotao Xiang, Li Li, Yongjie Wang, Chuan Jing, Xianju Zhou\",\"doi\":\"10.1016/j.jlumin.2023.120300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ratiometric luminescent thermometry based on dual-emission centers can effectively overcome the limitations of temperature sensing based on thermally coupled levels. Herein, Bi<sup>3+</sup> and Pr<sup>3+</sup> co-doped CaNb<sub>2</sub>O<sub>6</sub> phosphors were prepared by high-temperature solid-phase reactions, and crystal structural and photoluminescence were characterized. Then the luminescent thermometric properties of the obtained samples were studied, and the maximum absolute and relative sensitivity of the optimal sample (CaNb<sub>2</sub>O<sub>6</sub>: 0.5%Bi<sup>3+</sup>/0.5%Pr<sup>3+</sup> phosphor) achieved are 0.09 K<sup>−1</sup> @ 528 K and 2.17 % K<sup>−1</sup> @ 453 K, respectively. Furthermore, the luminescence of CaNb<sub>2</sub>O<sub>6</sub>: 0.5%Bi<sup>3+</sup>/0.5%Pr<sup>3+</sup> phosphor transforms remarkably from blue to red as the temperature rises, which can be adopted to monitor the ambient temperature via the glow color of the phosphor. To sum up, Bi<sup>3+</sup> and Pr<sup>3+</sup> co-doped CaNb<sub>2</sub>O<sub>6</sub> phosphors have been shown to have good thermosensitive and thermochromic characteristics.</p></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"266 \",\"pages\":\"Article 120300\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231323006336\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231323006336","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Luminescent ratiometric temperature sensing based on Pr3+ and Bi3+ co-doped CaNb2O6 phosphors
The ratiometric luminescent thermometry based on dual-emission centers can effectively overcome the limitations of temperature sensing based on thermally coupled levels. Herein, Bi3+ and Pr3+ co-doped CaNb2O6 phosphors were prepared by high-temperature solid-phase reactions, and crystal structural and photoluminescence were characterized. Then the luminescent thermometric properties of the obtained samples were studied, and the maximum absolute and relative sensitivity of the optimal sample (CaNb2O6: 0.5%Bi3+/0.5%Pr3+ phosphor) achieved are 0.09 K−1 @ 528 K and 2.17 % K−1 @ 453 K, respectively. Furthermore, the luminescence of CaNb2O6: 0.5%Bi3+/0.5%Pr3+ phosphor transforms remarkably from blue to red as the temperature rises, which can be adopted to monitor the ambient temperature via the glow color of the phosphor. To sum up, Bi3+ and Pr3+ co-doped CaNb2O6 phosphors have been shown to have good thermosensitive and thermochromic characteristics.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.