Panagiotis Roulias, Ioulia-Maria Mylonopoulou, Iosif Sifakakis, Christoph Bourauel, Theodore Eliades
{"title":"多区镍钛弓丝弯曲的热力学性能:检索分析。","authors":"Panagiotis Roulias, Ioulia-Maria Mylonopoulou, Iosif Sifakakis, Christoph Bourauel, Theodore Eliades","doi":"10.4041/kjod22.183","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire.</p><p><strong>Methods: </strong>The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis.</p><p><strong>Results: </strong>The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5.</p><p><strong>Conclusions: </strong>The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.</p>","PeriodicalId":51260,"journal":{"name":"Korean Journal of Orthodontics","volume":"53 2","pages":"89-98"},"PeriodicalIF":2.6000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/e8/kjod-53-2-89.PMC10040288.pdf","citationCount":"1","resultStr":"{\"title\":\"Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis.\",\"authors\":\"Panagiotis Roulias, Ioulia-Maria Mylonopoulou, Iosif Sifakakis, Christoph Bourauel, Theodore Eliades\",\"doi\":\"10.4041/kjod22.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire.</p><p><strong>Methods: </strong>The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis.</p><p><strong>Results: </strong>The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5.</p><p><strong>Conclusions: </strong>The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.</p>\",\"PeriodicalId\":51260,\"journal\":{\"name\":\"Korean Journal of Orthodontics\",\"volume\":\"53 2\",\"pages\":\"89-98\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/e8/kjod-53-2-89.PMC10040288.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Orthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4041/kjod22.183\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4041/kjod22.183","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis.
Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire.
Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis.
Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5.
Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.
期刊介绍:
The Korean Journal of Orthodontics (KJO) is an international, open access, peer reviewed journal published in January, March, May, July, September, and November each year. It was first launched in 1970 and, as the official scientific publication of Korean Association of Orthodontists, KJO aims to publish high quality clinical and scientific original research papers in all areas related to orthodontics and dentofacial orthopedics. Specifically, its interest focuses on evidence-based investigations of contemporary diagnostic procedures and treatment techniques, expanding to significant clinical reports of diverse treatment approaches.
The scope of KJO covers all areas of orthodontics and dentofacial orthopedics including successful diagnostic procedures and treatment planning, growth and development of the face and its clinical implications, appliance designs, biomechanics, TMJ disorders and adult treatment. Specifically, its latest interest focuses on skeletal anchorage devices, orthodontic appliance and biomaterials, 3 dimensional imaging techniques utilized for dentofacial diagnosis and treatment planning, and orthognathic surgery to correct skeletal disharmony in association of orthodontic treatment.