Zhiwei Huang , Xianyuan Zhang , Qian Zhu , Fangqi Cao , Wenbin Liu , Ping Shi , Xueming Yang
{"title":"小檗碱对感染柔嫩艾美耳球虫鸡体内铜、锌水平的影响","authors":"Zhiwei Huang , Xianyuan Zhang , Qian Zhu , Fangqi Cao , Wenbin Liu , Ping Shi , Xueming Yang","doi":"10.1016/j.molbiopara.2022.111478","DOIUrl":null,"url":null,"abstract":"<div><p>Berberine, a traditional Chinese medicine, was found to exhibit anticoccidial activity. However, its mechanism is unclear. Trace metals such as copper and zinc are extremely low (less than 0.01% of the total weight of the body) but play a vital role in organisms. In the present study, we investigated the effect of berberine on copper and zinc levels in chickens infected with <span><em>Eimeria tenella</em></span>. Firstly, our data confirmed that infected chickens with <em>E. tenella</em> exhibited classic impairment on the 8th day of post infection, such as weight loss and increased feed conversion. Further study showed that <em>E. tenella</em> infection decreased the contents of copper and zinc in the liver and serum of chickens. Berberine was similar to amprolium and significantly improved the pathogenic conditions. Berberine could restore copper and zinc imbalance caused by <em>E. tenella</em> in chickens to a large extent. Studies on the development of cecum lesions demonstrated that the protective effect of berberine on the intestinal cecum was similar to that of the Cu/Zn mixture<em>.</em><span> Additionally, the mRNA expression of several metal transport related genes of the chick small intestine<span>, including zinc transporter 1, copper transporter 1 and divalent metal ion transporter 1, was elevated by the treatment with berberine. Taken together, we speculate that the anticoccidial activity of berberine may be related to the maintenance of certain metals (Cu/Zn) homeostasis by affecting mRNA expression of their transport genes. However, the mode of action of BBR on these vital metals in the chicks infected with </span></span><em>E. tenella</em> still needs to be further studied.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of berberine on copper and zinc levels in chickens infected with Eimeria tenella\",\"authors\":\"Zhiwei Huang , Xianyuan Zhang , Qian Zhu , Fangqi Cao , Wenbin Liu , Ping Shi , Xueming Yang\",\"doi\":\"10.1016/j.molbiopara.2022.111478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Berberine, a traditional Chinese medicine, was found to exhibit anticoccidial activity. However, its mechanism is unclear. Trace metals such as copper and zinc are extremely low (less than 0.01% of the total weight of the body) but play a vital role in organisms. In the present study, we investigated the effect of berberine on copper and zinc levels in chickens infected with <span><em>Eimeria tenella</em></span>. Firstly, our data confirmed that infected chickens with <em>E. tenella</em> exhibited classic impairment on the 8th day of post infection, such as weight loss and increased feed conversion. Further study showed that <em>E. tenella</em> infection decreased the contents of copper and zinc in the liver and serum of chickens. Berberine was similar to amprolium and significantly improved the pathogenic conditions. Berberine could restore copper and zinc imbalance caused by <em>E. tenella</em> in chickens to a large extent. Studies on the development of cecum lesions demonstrated that the protective effect of berberine on the intestinal cecum was similar to that of the Cu/Zn mixture<em>.</em><span> Additionally, the mRNA expression of several metal transport related genes of the chick small intestine<span>, including zinc transporter 1, copper transporter 1 and divalent metal ion transporter 1, was elevated by the treatment with berberine. Taken together, we speculate that the anticoccidial activity of berberine may be related to the maintenance of certain metals (Cu/Zn) homeostasis by affecting mRNA expression of their transport genes. However, the mode of action of BBR on these vital metals in the chicks infected with </span></span><em>E. tenella</em> still needs to be further studied.</p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000329\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of berberine on copper and zinc levels in chickens infected with Eimeria tenella
Berberine, a traditional Chinese medicine, was found to exhibit anticoccidial activity. However, its mechanism is unclear. Trace metals such as copper and zinc are extremely low (less than 0.01% of the total weight of the body) but play a vital role in organisms. In the present study, we investigated the effect of berberine on copper and zinc levels in chickens infected with Eimeria tenella. Firstly, our data confirmed that infected chickens with E. tenella exhibited classic impairment on the 8th day of post infection, such as weight loss and increased feed conversion. Further study showed that E. tenella infection decreased the contents of copper and zinc in the liver and serum of chickens. Berberine was similar to amprolium and significantly improved the pathogenic conditions. Berberine could restore copper and zinc imbalance caused by E. tenella in chickens to a large extent. Studies on the development of cecum lesions demonstrated that the protective effect of berberine on the intestinal cecum was similar to that of the Cu/Zn mixture. Additionally, the mRNA expression of several metal transport related genes of the chick small intestine, including zinc transporter 1, copper transporter 1 and divalent metal ion transporter 1, was elevated by the treatment with berberine. Taken together, we speculate that the anticoccidial activity of berberine may be related to the maintenance of certain metals (Cu/Zn) homeostasis by affecting mRNA expression of their transport genes. However, the mode of action of BBR on these vital metals in the chicks infected with E. tenella still needs to be further studied.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.