Ekaterina Smotrova, Simin Li, Vadim V. Silberschmidt
{"title":"机械调节的骨小梁适应:计算机方法的进展报告","authors":"Ekaterina Smotrova, Simin Li, Vadim V. Silberschmidt","doi":"10.1016/j.bbiosy.2022.100058","DOIUrl":null,"url":null,"abstract":"<div><p><em>Adaptation</em> is the process by which bone responds to changes in loading environment and modulates its properties and spatial organization to meet the mechanical demands. Adaptation in trabecular bone is achieved through increase in bone mass and alignment of trabecular-bone morphology along the loading direction. This transformation of internal microstructure is governed by mechanical stimuli sensed by mechanosensory cells in the bone matrix. Realisation of adaptation in the form of local bone-resorption and -formation activities as a function of mechanical stimuli is still debated. <em>In silico</em> modelling is a useful tool for simulation of various scenarios that cannot be investigated <em>in vivo</em> and particularly well suited for prediction of trabecular bone adaptation. This progress report presents the recent advances in <em>in silico</em> modelling of mechanoregulated adaptation at the scale of trabecular bone tissue. Four well-established bone-adaptation models are reviewed in terms of their recent improvements and validation. They consider various mechanical factors: (i) strain energy density, (ii) strain and damage, (iii) stress nonuniformity and (iv) daily stress. Contradictions of these models are discussed and their ability to describe adequately a real-life mechanoregulation process in bone is compared.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"7 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534422000204/pdfft?md5=1414a6bd202e29c844a5774b6c4c5b2e&pid=1-s2.0-S2666534422000204-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Mechanoregulated trabecular bone adaptation: Progress report on in silico approaches\",\"authors\":\"Ekaterina Smotrova, Simin Li, Vadim V. Silberschmidt\",\"doi\":\"10.1016/j.bbiosy.2022.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Adaptation</em> is the process by which bone responds to changes in loading environment and modulates its properties and spatial organization to meet the mechanical demands. Adaptation in trabecular bone is achieved through increase in bone mass and alignment of trabecular-bone morphology along the loading direction. This transformation of internal microstructure is governed by mechanical stimuli sensed by mechanosensory cells in the bone matrix. Realisation of adaptation in the form of local bone-resorption and -formation activities as a function of mechanical stimuli is still debated. <em>In silico</em> modelling is a useful tool for simulation of various scenarios that cannot be investigated <em>in vivo</em> and particularly well suited for prediction of trabecular bone adaptation. This progress report presents the recent advances in <em>in silico</em> modelling of mechanoregulated adaptation at the scale of trabecular bone tissue. Four well-established bone-adaptation models are reviewed in terms of their recent improvements and validation. They consider various mechanical factors: (i) strain energy density, (ii) strain and damage, (iii) stress nonuniformity and (iv) daily stress. Contradictions of these models are discussed and their ability to describe adequately a real-life mechanoregulation process in bone is compared.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":\"7 \",\"pages\":\"Article 100058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666534422000204/pdfft?md5=1414a6bd202e29c844a5774b6c4c5b2e&pid=1-s2.0-S2666534422000204-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666534422000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666534422000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mechanoregulated trabecular bone adaptation: Progress report on in silico approaches
Adaptation is the process by which bone responds to changes in loading environment and modulates its properties and spatial organization to meet the mechanical demands. Adaptation in trabecular bone is achieved through increase in bone mass and alignment of trabecular-bone morphology along the loading direction. This transformation of internal microstructure is governed by mechanical stimuli sensed by mechanosensory cells in the bone matrix. Realisation of adaptation in the form of local bone-resorption and -formation activities as a function of mechanical stimuli is still debated. In silico modelling is a useful tool for simulation of various scenarios that cannot be investigated in vivo and particularly well suited for prediction of trabecular bone adaptation. This progress report presents the recent advances in in silico modelling of mechanoregulated adaptation at the scale of trabecular bone tissue. Four well-established bone-adaptation models are reviewed in terms of their recent improvements and validation. They consider various mechanical factors: (i) strain energy density, (ii) strain and damage, (iii) stress nonuniformity and (iv) daily stress. Contradictions of these models are discussed and their ability to describe adequately a real-life mechanoregulation process in bone is compared.