Eduardo Perez-Valero, Christian Morillas, Miguel A Lopez-Gordo, Jesus Minguillon
{"title":"四通道脑电图分析支持早期阿尔茨海默病的检测。","authors":"Eduardo Perez-Valero, Christian Morillas, Miguel A Lopez-Gordo, Jesus Minguillon","doi":"10.1142/S0129065723500211","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most prevalent form of dementia. Although there is no current cure, medical treatment can help to control its progression. Hence, early-stage diagnosis is crucial to maximize the living standards of the patients. Biochemical markers and medical imaging in combination with neuropsychological tests represent the most extended diagnosis procedure. However, these techniques require specialized personnel and long processing time. Furthermore, the access to some of these techniques is often limited in crowded healthcare systems and rural areas. In this context, electroencephalography (EEG), a non-invasive technique to obtain endogenous brain information, has been proposed for the diagnosis of early-stage AD. Despite the valuable information provided by clinical EEG and high density montages, these approaches are impractical in conditions such as those described above. Consequently, in this study, we evaluated the feasibly of using a reduced EEG montage with only four channels to detect early-stage AD. For this purpose, we involved eight clinically diagnosed AD patients and eight healthy controls. The results we obtained reveal similar accuracies ([Formula: see text]-value[Formula: see text]0.66) for the reduced montage (0.86) and a 16-channel montage (0.87). This suggests that a four-channel wearable EEG system could be an effective tool for supporting early-stage AD detection.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 4","pages":"2350021"},"PeriodicalIF":6.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting the Detection of Early Alzheimer's Disease with a Four-Channel EEG Analysis.\",\"authors\":\"Eduardo Perez-Valero, Christian Morillas, Miguel A Lopez-Gordo, Jesus Minguillon\",\"doi\":\"10.1142/S0129065723500211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most prevalent form of dementia. Although there is no current cure, medical treatment can help to control its progression. Hence, early-stage diagnosis is crucial to maximize the living standards of the patients. Biochemical markers and medical imaging in combination with neuropsychological tests represent the most extended diagnosis procedure. However, these techniques require specialized personnel and long processing time. Furthermore, the access to some of these techniques is often limited in crowded healthcare systems and rural areas. In this context, electroencephalography (EEG), a non-invasive technique to obtain endogenous brain information, has been proposed for the diagnosis of early-stage AD. Despite the valuable information provided by clinical EEG and high density montages, these approaches are impractical in conditions such as those described above. Consequently, in this study, we evaluated the feasibly of using a reduced EEG montage with only four channels to detect early-stage AD. For this purpose, we involved eight clinically diagnosed AD patients and eight healthy controls. The results we obtained reveal similar accuracies ([Formula: see text]-value[Formula: see text]0.66) for the reduced montage (0.86) and a 16-channel montage (0.87). This suggests that a four-channel wearable EEG system could be an effective tool for supporting early-stage AD detection.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"33 4\",\"pages\":\"2350021\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500211\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500211","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Supporting the Detection of Early Alzheimer's Disease with a Four-Channel EEG Analysis.
Alzheimer's disease (AD) is the most prevalent form of dementia. Although there is no current cure, medical treatment can help to control its progression. Hence, early-stage diagnosis is crucial to maximize the living standards of the patients. Biochemical markers and medical imaging in combination with neuropsychological tests represent the most extended diagnosis procedure. However, these techniques require specialized personnel and long processing time. Furthermore, the access to some of these techniques is often limited in crowded healthcare systems and rural areas. In this context, electroencephalography (EEG), a non-invasive technique to obtain endogenous brain information, has been proposed for the diagnosis of early-stage AD. Despite the valuable information provided by clinical EEG and high density montages, these approaches are impractical in conditions such as those described above. Consequently, in this study, we evaluated the feasibly of using a reduced EEG montage with only four channels to detect early-stage AD. For this purpose, we involved eight clinically diagnosed AD patients and eight healthy controls. The results we obtained reveal similar accuracies ([Formula: see text]-value[Formula: see text]0.66) for the reduced montage (0.86) and a 16-channel montage (0.87). This suggests that a four-channel wearable EEG system could be an effective tool for supporting early-stage AD detection.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.