选择偏差,妊娠期体重增加研究中的一个警告

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sumanta Saha
{"title":"选择偏差,妊娠期体重增加研究中的一个警告","authors":"Sumanta Saha","doi":"10.4274/jtgga.galenos.2022.2022-9-1","DOIUrl":null,"url":null,"abstract":"©Copyright 2023 by the Turkish-German Gynecological Education and Research Foundation Available online at www.jtgga.org Journal of the Turkish-German Gynecological Association published by Galenos Publishing House. To the Editor, In epidemiological studies on gestational weight gain (GWG), the selection bias burden due to a mismatch between the selected and eligible target population remains unclear and underexplored. It is, therefore, critical to explore the plausible sources of selection bias to ensure rigor in epidemiological estimates determining associations between GWG and other parameters of interest. GWG is the difference between predelivery weight and first trimester or pre-pregnancy weight, which has emerged as a burning research topic due to its independent association with adverse perinatal outcomes, such as large for gestational age and macrosomia (1). Selection bias can happen due to the pathophysiological and clinical complexities associated with GWG. This letter highlights some of these scenarios that require a calibrated study population selection approach to minimize the selection bias risk in future GWG studies. I begin with the Institute of Medicine 2009 guideline, (2) a popular prepregnancy body mass index-based recommendation of GWG ranges and patterns, widely used in population-based epidemiological studies. It’s critical to identify and exclude pregnant females with the following characteristics from the eligible study population, as this guideline may not apply to them due to inadequate evidence: Aborigines; preeclampsia; gestational diabetes mellitus; different obesity subclasses; and triplet and higher-order pregnancies (2-4). Besides, some physicians believe that the recommendations for overweight and obese women are too high (4). Then, what are the conditions or situations in which GWG measurements are at risk of reverse causation bias? for example in gestational diabetes mellitus (GDM), a late metabolic complication of pregnancy characterized by hyperglycemia, GDM treatment with a calorie-restricted diet, for instance, can alter the GWG course. Besides, variation in the treatment can cause differences in GWG patterns among patients suffering from the same ailment. For example, while weight loss may occur in GDM patients compliant with non-pharmacological interventions, the opposite can happen in insulin-treated GDM patients. Pre-existing health conditions can also determine the GWG pattern because of the disease course itself or its treatment, as may be seen in thyroid dysfunction and SteinLeventhal syndrome. Next, it’s essential to distinguish pregnancies prone to GWG fluctuations. For instance, women with preeclampsia, a pregnancy-induced hypertensive condition associated with proteinuria, may present with decreased weight gain in early pregnancy due to inadequate intravascular plasma volume expansion and increased weight gain in late pregnancy because of excessive vascular permeability and edema (due to oncotic pressure drop) (2). Other factors which can influence GWG measurements during a prospective longitudinal follow-up of a pregnant cohort include abnormal amniotic fluid volumes (e.g., oligohydramnios), shorter or longer duration of pregnancy (e.g., preterm delivery), social factors (e.g., smoking), and genetic makeup of the mother (5). Taken together, all these factors highlight the importance of selection bias evaluation in GWG studies. Therefore, cautious, well-rationalized, and knowledge-based research protocols are required for GWG research to produce unbiased, robust, and generalizable research findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/6e/JTGGA-24-80.PMC10019014.pdf","citationCount":"0","resultStr":"{\"title\":\"Selection bias, a caveat in gestational weight gain research\",\"authors\":\"Sumanta Saha\",\"doi\":\"10.4274/jtgga.galenos.2022.2022-9-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"©Copyright 2023 by the Turkish-German Gynecological Education and Research Foundation Available online at www.jtgga.org Journal of the Turkish-German Gynecological Association published by Galenos Publishing House. To the Editor, In epidemiological studies on gestational weight gain (GWG), the selection bias burden due to a mismatch between the selected and eligible target population remains unclear and underexplored. It is, therefore, critical to explore the plausible sources of selection bias to ensure rigor in epidemiological estimates determining associations between GWG and other parameters of interest. GWG is the difference between predelivery weight and first trimester or pre-pregnancy weight, which has emerged as a burning research topic due to its independent association with adverse perinatal outcomes, such as large for gestational age and macrosomia (1). Selection bias can happen due to the pathophysiological and clinical complexities associated with GWG. This letter highlights some of these scenarios that require a calibrated study population selection approach to minimize the selection bias risk in future GWG studies. I begin with the Institute of Medicine 2009 guideline, (2) a popular prepregnancy body mass index-based recommendation of GWG ranges and patterns, widely used in population-based epidemiological studies. It’s critical to identify and exclude pregnant females with the following characteristics from the eligible study population, as this guideline may not apply to them due to inadequate evidence: Aborigines; preeclampsia; gestational diabetes mellitus; different obesity subclasses; and triplet and higher-order pregnancies (2-4). Besides, some physicians believe that the recommendations for overweight and obese women are too high (4). Then, what are the conditions or situations in which GWG measurements are at risk of reverse causation bias? for example in gestational diabetes mellitus (GDM), a late metabolic complication of pregnancy characterized by hyperglycemia, GDM treatment with a calorie-restricted diet, for instance, can alter the GWG course. Besides, variation in the treatment can cause differences in GWG patterns among patients suffering from the same ailment. For example, while weight loss may occur in GDM patients compliant with non-pharmacological interventions, the opposite can happen in insulin-treated GDM patients. Pre-existing health conditions can also determine the GWG pattern because of the disease course itself or its treatment, as may be seen in thyroid dysfunction and SteinLeventhal syndrome. Next, it’s essential to distinguish pregnancies prone to GWG fluctuations. For instance, women with preeclampsia, a pregnancy-induced hypertensive condition associated with proteinuria, may present with decreased weight gain in early pregnancy due to inadequate intravascular plasma volume expansion and increased weight gain in late pregnancy because of excessive vascular permeability and edema (due to oncotic pressure drop) (2). Other factors which can influence GWG measurements during a prospective longitudinal follow-up of a pregnant cohort include abnormal amniotic fluid volumes (e.g., oligohydramnios), shorter or longer duration of pregnancy (e.g., preterm delivery), social factors (e.g., smoking), and genetic makeup of the mother (5). Taken together, all these factors highlight the importance of selection bias evaluation in GWG studies. Therefore, cautious, well-rationalized, and knowledge-based research protocols are required for GWG research to produce unbiased, robust, and generalizable research findings.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/6e/JTGGA-24-80.PMC10019014.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4274/jtgga.galenos.2022.2022-9-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/jtgga.galenos.2022.2022-9-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection bias, a caveat in gestational weight gain research
©Copyright 2023 by the Turkish-German Gynecological Education and Research Foundation Available online at www.jtgga.org Journal of the Turkish-German Gynecological Association published by Galenos Publishing House. To the Editor, In epidemiological studies on gestational weight gain (GWG), the selection bias burden due to a mismatch between the selected and eligible target population remains unclear and underexplored. It is, therefore, critical to explore the plausible sources of selection bias to ensure rigor in epidemiological estimates determining associations between GWG and other parameters of interest. GWG is the difference between predelivery weight and first trimester or pre-pregnancy weight, which has emerged as a burning research topic due to its independent association with adverse perinatal outcomes, such as large for gestational age and macrosomia (1). Selection bias can happen due to the pathophysiological and clinical complexities associated with GWG. This letter highlights some of these scenarios that require a calibrated study population selection approach to minimize the selection bias risk in future GWG studies. I begin with the Institute of Medicine 2009 guideline, (2) a popular prepregnancy body mass index-based recommendation of GWG ranges and patterns, widely used in population-based epidemiological studies. It’s critical to identify and exclude pregnant females with the following characteristics from the eligible study population, as this guideline may not apply to them due to inadequate evidence: Aborigines; preeclampsia; gestational diabetes mellitus; different obesity subclasses; and triplet and higher-order pregnancies (2-4). Besides, some physicians believe that the recommendations for overweight and obese women are too high (4). Then, what are the conditions or situations in which GWG measurements are at risk of reverse causation bias? for example in gestational diabetes mellitus (GDM), a late metabolic complication of pregnancy characterized by hyperglycemia, GDM treatment with a calorie-restricted diet, for instance, can alter the GWG course. Besides, variation in the treatment can cause differences in GWG patterns among patients suffering from the same ailment. For example, while weight loss may occur in GDM patients compliant with non-pharmacological interventions, the opposite can happen in insulin-treated GDM patients. Pre-existing health conditions can also determine the GWG pattern because of the disease course itself or its treatment, as may be seen in thyroid dysfunction and SteinLeventhal syndrome. Next, it’s essential to distinguish pregnancies prone to GWG fluctuations. For instance, women with preeclampsia, a pregnancy-induced hypertensive condition associated with proteinuria, may present with decreased weight gain in early pregnancy due to inadequate intravascular plasma volume expansion and increased weight gain in late pregnancy because of excessive vascular permeability and edema (due to oncotic pressure drop) (2). Other factors which can influence GWG measurements during a prospective longitudinal follow-up of a pregnant cohort include abnormal amniotic fluid volumes (e.g., oligohydramnios), shorter or longer duration of pregnancy (e.g., preterm delivery), social factors (e.g., smoking), and genetic makeup of the mother (5). Taken together, all these factors highlight the importance of selection bias evaluation in GWG studies. Therefore, cautious, well-rationalized, and knowledge-based research protocols are required for GWG research to produce unbiased, robust, and generalizable research findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信