Jakub Baczyński, Ferhat Celep, Krzysztof Spalik, Regine Claßen-Bockhoff
{"title":"花状分生组织条件和空间约束决定了菊科花假蜂的结构。","authors":"Jakub Baczyński, Ferhat Celep, Krzysztof Spalik, Regine Claßen-Bockhoff","doi":"10.1186/s13227-022-00204-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pseudanthia are multiflowered units that resemble single flowers, frequently by association with pseudocorollas formed by enlarged peripheral florets (ray flowers). Such resemblance is not only superficial, because numerous pseudanthia originate from peculiar reproductive meristems with flower-like characteristics, i.e. floral unit meristems (FUMs). Complex FUM-derived pseudanthia with ray flowers are especially common in Apiaceae, but our knowledge about their patterning is limited. In this paper, we aimed to investigate both the genetic and morphological basis of their development.</p><p><strong>Results: </strong>We analysed umbel morphogenesis with SEM in six species representing four clades of Apiaceae subfamily Apioideae with independently acquired floral pseudanthia. Additionally, using in situ hybridization, we investigated expression patterns of LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), and CYCLOIDEA (CYC) during umbel development in carrot (Daucus carota subsp. carota). Here, we show that initial differences in size and shape of umbel meristems influence the position of ray flower formation, whereas an interplay between peripheral promotion and spatial constraints in umbellet meristems take part in the establishment of specific patterns of zygomorphy in ray flowers of Apiaceae. This space-dependent patterning results from flower-like morphogenetic traits of the umbel which are also visible at the molecular level. Transcripts of DcLFY are uniformly distributed in the incipient umbel, umbellet and flower meristems, while DcCYC shows divergent expression in central and peripheral florets.</p><p><strong>Conclusions: </strong>Our results indicate that umbels develop from determinate reproductive meristems with flower-like characteristics, which supports their recognition as floral units. The great architectural diversity and complexity of pseudanthia in Apiaceae can be explained by the unique conditions of FUMs-an interplay between expression of regulatory genes, specific spatio-temporal ontogenetic constraints and morphogenetic gradients arising during expansion and repetitive fractionation. Alongside Asteraceae, umbellifers constitute an interesting model for investigation of patterning in complex pseudanthia.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"13 1","pages":"19"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764545/pdf/","citationCount":"2","resultStr":"{\"title\":\"Flower-like meristem conditions and spatial constraints shape architecture of floral pseudanthia in Apioideae.\",\"authors\":\"Jakub Baczyński, Ferhat Celep, Krzysztof Spalik, Regine Claßen-Bockhoff\",\"doi\":\"10.1186/s13227-022-00204-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pseudanthia are multiflowered units that resemble single flowers, frequently by association with pseudocorollas formed by enlarged peripheral florets (ray flowers). Such resemblance is not only superficial, because numerous pseudanthia originate from peculiar reproductive meristems with flower-like characteristics, i.e. floral unit meristems (FUMs). Complex FUM-derived pseudanthia with ray flowers are especially common in Apiaceae, but our knowledge about their patterning is limited. In this paper, we aimed to investigate both the genetic and morphological basis of their development.</p><p><strong>Results: </strong>We analysed umbel morphogenesis with SEM in six species representing four clades of Apiaceae subfamily Apioideae with independently acquired floral pseudanthia. Additionally, using in situ hybridization, we investigated expression patterns of LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), and CYCLOIDEA (CYC) during umbel development in carrot (Daucus carota subsp. carota). Here, we show that initial differences in size and shape of umbel meristems influence the position of ray flower formation, whereas an interplay between peripheral promotion and spatial constraints in umbellet meristems take part in the establishment of specific patterns of zygomorphy in ray flowers of Apiaceae. This space-dependent patterning results from flower-like morphogenetic traits of the umbel which are also visible at the molecular level. Transcripts of DcLFY are uniformly distributed in the incipient umbel, umbellet and flower meristems, while DcCYC shows divergent expression in central and peripheral florets.</p><p><strong>Conclusions: </strong>Our results indicate that umbels develop from determinate reproductive meristems with flower-like characteristics, which supports their recognition as floral units. The great architectural diversity and complexity of pseudanthia in Apiaceae can be explained by the unique conditions of FUMs-an interplay between expression of regulatory genes, specific spatio-temporal ontogenetic constraints and morphogenetic gradients arising during expansion and repetitive fractionation. Alongside Asteraceae, umbellifers constitute an interesting model for investigation of patterning in complex pseudanthia.</p>\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":\"13 1\",\"pages\":\"19\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764545/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-022-00204-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-022-00204-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Flower-like meristem conditions and spatial constraints shape architecture of floral pseudanthia in Apioideae.
Background: Pseudanthia are multiflowered units that resemble single flowers, frequently by association with pseudocorollas formed by enlarged peripheral florets (ray flowers). Such resemblance is not only superficial, because numerous pseudanthia originate from peculiar reproductive meristems with flower-like characteristics, i.e. floral unit meristems (FUMs). Complex FUM-derived pseudanthia with ray flowers are especially common in Apiaceae, but our knowledge about their patterning is limited. In this paper, we aimed to investigate both the genetic and morphological basis of their development.
Results: We analysed umbel morphogenesis with SEM in six species representing four clades of Apiaceae subfamily Apioideae with independently acquired floral pseudanthia. Additionally, using in situ hybridization, we investigated expression patterns of LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), and CYCLOIDEA (CYC) during umbel development in carrot (Daucus carota subsp. carota). Here, we show that initial differences in size and shape of umbel meristems influence the position of ray flower formation, whereas an interplay between peripheral promotion and spatial constraints in umbellet meristems take part in the establishment of specific patterns of zygomorphy in ray flowers of Apiaceae. This space-dependent patterning results from flower-like morphogenetic traits of the umbel which are also visible at the molecular level. Transcripts of DcLFY are uniformly distributed in the incipient umbel, umbellet and flower meristems, while DcCYC shows divergent expression in central and peripheral florets.
Conclusions: Our results indicate that umbels develop from determinate reproductive meristems with flower-like characteristics, which supports their recognition as floral units. The great architectural diversity and complexity of pseudanthia in Apiaceae can be explained by the unique conditions of FUMs-an interplay between expression of regulatory genes, specific spatio-temporal ontogenetic constraints and morphogenetic gradients arising during expansion and repetitive fractionation. Alongside Asteraceae, umbellifers constitute an interesting model for investigation of patterning in complex pseudanthia.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology