{"title":"重症监护患者器官衰竭的知识和数据驱动预测。","authors":"Xinyu Ma, Meng Wang, Sihan Lin, Yuhao Zhang, Yanjian Zhang, Wen Ouyang, Xing Liu","doi":"10.1007/s13755-023-00210-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The early detection of organ failure mitigates the risk of post-intensive care syndrome and long-term functional impairment. The aim of this study is to predict organ failure in real-time for critical care patients based on a data-driven and knowledge-driven machine learning method (DKM) and provide explanations for the prediction by incorporating a medical knowledge graph.</p><p><strong>Methods: </strong>The cohort of this study was a subset of the 4,386 adult Intensive Care Unit (ICU) patients from the MIMIC-III dataset collected between 2001 and 2012, and the primary outcome was the Delta Sequential Organ Failure Assessment (SOFA) score. A real-time Delta SOFA score prediction model was developed with two key components: an improved deep learning temporal convolutional network (S-TCN) and a graph-embedding feature extraction method based on a medical knowledge graph. Entities and relations related to organ failure were extracted from the Unified Medical Language System to build the medical knowledge graph, and patient data were mapped onto the graph to extract the embeddings. We measured the performance of our DKM approach with cross-validation to avoid the formation of biased assessments.</p><p><strong>Results: </strong>An area under the receiver operating characteristic curve (AUC) of 0.973, a precision of 0.923, a NPV of 0.989, and an F1 score of 0.927 were achieved using the DKM approach, which significantly outperformed the baseline methods. Additionally, the performance remained stable following external validation on the eICU dataset, which consists of 2,816 admissions (AUC = 0.981, precision = 0.860, NPV = 0.984). Visualization of feature importance for the Delta SOFA score and their relationships on the basic clinical medical (BCM) knowledge graph provided a model explanation.</p><p><strong>Conclusion: </strong>The use of an improved TCN model and a medical knowledge graph led to substantial improvement in prediction accuracy, providing generalizability and an independent explanation for organ failure prediction in critical care patients. These findings show the potential of incorporating prior domain knowledge into machine learning models to inform care and service planning.</p><p><strong>Supplementary information: </strong>The online version of this article contains supplementary material available 10.1007/s13755-023-00210-5.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"7"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Knowledge and data-driven prediction of organ failure in critical care patients.\",\"authors\":\"Xinyu Ma, Meng Wang, Sihan Lin, Yuhao Zhang, Yanjian Zhang, Wen Ouyang, Xing Liu\",\"doi\":\"10.1007/s13755-023-00210-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The early detection of organ failure mitigates the risk of post-intensive care syndrome and long-term functional impairment. The aim of this study is to predict organ failure in real-time for critical care patients based on a data-driven and knowledge-driven machine learning method (DKM) and provide explanations for the prediction by incorporating a medical knowledge graph.</p><p><strong>Methods: </strong>The cohort of this study was a subset of the 4,386 adult Intensive Care Unit (ICU) patients from the MIMIC-III dataset collected between 2001 and 2012, and the primary outcome was the Delta Sequential Organ Failure Assessment (SOFA) score. A real-time Delta SOFA score prediction model was developed with two key components: an improved deep learning temporal convolutional network (S-TCN) and a graph-embedding feature extraction method based on a medical knowledge graph. Entities and relations related to organ failure were extracted from the Unified Medical Language System to build the medical knowledge graph, and patient data were mapped onto the graph to extract the embeddings. We measured the performance of our DKM approach with cross-validation to avoid the formation of biased assessments.</p><p><strong>Results: </strong>An area under the receiver operating characteristic curve (AUC) of 0.973, a precision of 0.923, a NPV of 0.989, and an F1 score of 0.927 were achieved using the DKM approach, which significantly outperformed the baseline methods. Additionally, the performance remained stable following external validation on the eICU dataset, which consists of 2,816 admissions (AUC = 0.981, precision = 0.860, NPV = 0.984). Visualization of feature importance for the Delta SOFA score and their relationships on the basic clinical medical (BCM) knowledge graph provided a model explanation.</p><p><strong>Conclusion: </strong>The use of an improved TCN model and a medical knowledge graph led to substantial improvement in prediction accuracy, providing generalizability and an independent explanation for organ failure prediction in critical care patients. These findings show the potential of incorporating prior domain knowledge into machine learning models to inform care and service planning.</p><p><strong>Supplementary information: </strong>The online version of this article contains supplementary material available 10.1007/s13755-023-00210-5.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"7\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00210-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00210-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Knowledge and data-driven prediction of organ failure in critical care patients.
Purpose: The early detection of organ failure mitigates the risk of post-intensive care syndrome and long-term functional impairment. The aim of this study is to predict organ failure in real-time for critical care patients based on a data-driven and knowledge-driven machine learning method (DKM) and provide explanations for the prediction by incorporating a medical knowledge graph.
Methods: The cohort of this study was a subset of the 4,386 adult Intensive Care Unit (ICU) patients from the MIMIC-III dataset collected between 2001 and 2012, and the primary outcome was the Delta Sequential Organ Failure Assessment (SOFA) score. A real-time Delta SOFA score prediction model was developed with two key components: an improved deep learning temporal convolutional network (S-TCN) and a graph-embedding feature extraction method based on a medical knowledge graph. Entities and relations related to organ failure were extracted from the Unified Medical Language System to build the medical knowledge graph, and patient data were mapped onto the graph to extract the embeddings. We measured the performance of our DKM approach with cross-validation to avoid the formation of biased assessments.
Results: An area under the receiver operating characteristic curve (AUC) of 0.973, a precision of 0.923, a NPV of 0.989, and an F1 score of 0.927 were achieved using the DKM approach, which significantly outperformed the baseline methods. Additionally, the performance remained stable following external validation on the eICU dataset, which consists of 2,816 admissions (AUC = 0.981, precision = 0.860, NPV = 0.984). Visualization of feature importance for the Delta SOFA score and their relationships on the basic clinical medical (BCM) knowledge graph provided a model explanation.
Conclusion: The use of an improved TCN model and a medical knowledge graph led to substantial improvement in prediction accuracy, providing generalizability and an independent explanation for organ failure prediction in critical care patients. These findings show the potential of incorporating prior domain knowledge into machine learning models to inform care and service planning.
Supplementary information: The online version of this article contains supplementary material available 10.1007/s13755-023-00210-5.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.