SARS-CoV-2“突变黑名单”和“突变白名单”

Q1 Social Sciences
Yamin Sun , Min Wang , Wenchao Lin , Wei Dong , Jianguo Xu
{"title":"SARS-CoV-2“突变黑名单”和“突变白名单”","authors":"Yamin Sun ,&nbsp;Min Wang ,&nbsp;Wenchao Lin ,&nbsp;Wei Dong ,&nbsp;Jianguo Xu","doi":"10.1016/j.jobb.2022.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provide information on the emergence of mutations. In this study, analysis of these sequenced genomes identified 296,728 <em>de novo</em> mutations (DNMs), and found that six types of base substitutions reached saturation in the sequenced genome population. Based on this analysis, a “mutation blacklist” of SARS-CoV-2 was compiled. The loci on the “mutation blacklist” are highly conserved, and these mutations likely have detrimental effects on virus survival, replication, and transmission. This information is valuable for SARS-CoV-2 research on gene function, vaccine design, and drug development. Through association analysis of DNMs and viral transmission rates, we identified 185 DNMs that positively correlated with the SARS-CoV-2 transmission rate, and these DNMs where classified as the “mutation whitelist” of SARS-CoV-2. The mutations on the “mutation whitelist” are beneficial for SARS-CoV-2 transmission and could therefore be used to evaluate the transmissibility of new variants. The occurrence of mutations and the evolution of viruses are dynamic processes. To more effectively monitor the mutations and variants of SARS-CoV-2, we built a SARS-CoV-2 mutation and variant<!--> <!-->monitoring and pre-warning system (MVMPS), which can monitor the occurrence and development of mutations and variants of SARS-CoV-2, as well as provide pre-warning for the prevention and control of SARS-CoV-2 (<span>https://www.omicx.cn/</span><svg><path></path></svg>). Additionally, this system could be used in real-time to update the “mutation whitelist” and “mutation blacklist” of SARS-CoV-2.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"4 2","pages":"Pages 114-120"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273572/pdf/","citationCount":"3","resultStr":"{\"title\":\"“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2\",\"authors\":\"Yamin Sun ,&nbsp;Min Wang ,&nbsp;Wenchao Lin ,&nbsp;Wei Dong ,&nbsp;Jianguo Xu\",\"doi\":\"10.1016/j.jobb.2022.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provide information on the emergence of mutations. In this study, analysis of these sequenced genomes identified 296,728 <em>de novo</em> mutations (DNMs), and found that six types of base substitutions reached saturation in the sequenced genome population. Based on this analysis, a “mutation blacklist” of SARS-CoV-2 was compiled. The loci on the “mutation blacklist” are highly conserved, and these mutations likely have detrimental effects on virus survival, replication, and transmission. This information is valuable for SARS-CoV-2 research on gene function, vaccine design, and drug development. Through association analysis of DNMs and viral transmission rates, we identified 185 DNMs that positively correlated with the SARS-CoV-2 transmission rate, and these DNMs where classified as the “mutation whitelist” of SARS-CoV-2. The mutations on the “mutation whitelist” are beneficial for SARS-CoV-2 transmission and could therefore be used to evaluate the transmissibility of new variants. The occurrence of mutations and the evolution of viruses are dynamic processes. To more effectively monitor the mutations and variants of SARS-CoV-2, we built a SARS-CoV-2 mutation and variant<!--> <!-->monitoring and pre-warning system (MVMPS), which can monitor the occurrence and development of mutations and variants of SARS-CoV-2, as well as provide pre-warning for the prevention and control of SARS-CoV-2 (<span>https://www.omicx.cn/</span><svg><path></path></svg>). Additionally, this system could be used in real-time to update the “mutation whitelist” and “mutation blacklist” of SARS-CoV-2.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":\"4 2\",\"pages\":\"Pages 114-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273572/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258893382200019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258893382200019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3

摘要

在过去的两年里,世界各地的科学家已经完成了600多万个SARS-CoV-2基因组序列。今天,SARS-CoV-2基因组的数量超过了所有其他病毒基因组的总数。这些基因组记录了SARS-CoV-2在人类宿主中的进化,并提供了有关突变出现的信息。在本研究中,对这些测序基因组的分析鉴定出296,728个de novo mutations (dnm),并发现6种碱基替换在测序基因组群体中达到饱和。在此基础上,编制了SARS-CoV-2的“突变黑名单”。“突变黑名单”上的基因座是高度保守的,这些突变可能对病毒的存活、复制和传播有不利影响。这些信息对SARS-CoV-2基因功能研究、疫苗设计和药物开发具有重要价值。通过dnm与病毒传播率的关联分析,我们确定了185个与SARS-CoV-2传播率正相关的dnm,并将这些dnm归类为SARS-CoV-2的“突变白名单”。“突变白名单”上的突变有利于SARS-CoV-2的传播,因此可用于评估新变体的传播性。病毒突变的发生和进化是一个动态的过程。为了更有效地监测SARS-CoV-2的突变和变异,我们建立了SARS-CoV-2突变和变异监测预警系统(MVMPS),可以监测SARS-CoV-2突变和变异的发生和发展,并为SARS-CoV-2的预防和控制提供预警(https://www.omicx.cn/)。该系统可实时更新SARS-CoV-2的“突变白名单”和“突变黑名单”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2

“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2

“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2

“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2

Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provide information on the emergence of mutations. In this study, analysis of these sequenced genomes identified 296,728 de novo mutations (DNMs), and found that six types of base substitutions reached saturation in the sequenced genome population. Based on this analysis, a “mutation blacklist” of SARS-CoV-2 was compiled. The loci on the “mutation blacklist” are highly conserved, and these mutations likely have detrimental effects on virus survival, replication, and transmission. This information is valuable for SARS-CoV-2 research on gene function, vaccine design, and drug development. Through association analysis of DNMs and viral transmission rates, we identified 185 DNMs that positively correlated with the SARS-CoV-2 transmission rate, and these DNMs where classified as the “mutation whitelist” of SARS-CoV-2. The mutations on the “mutation whitelist” are beneficial for SARS-CoV-2 transmission and could therefore be used to evaluate the transmissibility of new variants. The occurrence of mutations and the evolution of viruses are dynamic processes. To more effectively monitor the mutations and variants of SARS-CoV-2, we built a SARS-CoV-2 mutation and variant monitoring and pre-warning system (MVMPS), which can monitor the occurrence and development of mutations and variants of SARS-CoV-2, as well as provide pre-warning for the prevention and control of SARS-CoV-2 (https://www.omicx.cn/). Additionally, this system could be used in real-time to update the “mutation whitelist” and “mutation blacklist” of SARS-CoV-2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biosafety and Biosecurity
Journal of Biosafety and Biosecurity Social Sciences-Linguistics and Language
CiteScore
6.00
自引率
0.00%
发文量
20
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信