中性粒细胞增多症、淋巴细胞减少症和骨髓功能障碍:先天性和适应性免疫细胞定量变化的生动回顾,COVID-19病理学的定义。

Oxford open immunology Pub Date : 2021-07-15 eCollection Date: 2021-01-01 DOI:10.1093/oxfimm/iqab016
Amy S Codd, Stephanie J Hanna, Ewoud B Compeer, Felix C Richter, Eleanor J Pring, Ester Gea-Mallorquí, Mariana Borsa, Owen R Moon, D Oliver Scourfield, Awen M Gallimore, Anita Milicic
{"title":"中性粒细胞增多症、淋巴细胞减少症和骨髓功能障碍:先天性和适应性免疫细胞定量变化的生动回顾,COVID-19病理学的定义。","authors":"Amy S Codd, Stephanie J Hanna, Ewoud B Compeer, Felix C Richter, Eleanor J Pring, Ester Gea-Mallorquí, Mariana Borsa, Owen R Moon, D Oliver Scourfield, Awen M Gallimore, Anita Milicic","doi":"10.1093/oxfimm/iqab016","DOIUrl":null,"url":null,"abstract":"<p><p>Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"2 1","pages":"iqab016"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology.\",\"authors\":\"Amy S Codd, Stephanie J Hanna, Ewoud B Compeer, Felix C Richter, Eleanor J Pring, Ester Gea-Mallorquí, Mariana Borsa, Owen R Moon, D Oliver Scourfield, Awen M Gallimore, Anita Milicic\",\"doi\":\"10.1093/oxfimm/iqab016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.</p>\",\"PeriodicalId\":74384,\"journal\":{\"name\":\"Oxford open immunology\",\"volume\":\"2 1\",\"pages\":\"iqab016\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfimm/iqab016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfimm/iqab016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

破坏免疫细胞数量和频率平衡是病毒感染的一个常见特征。这种情况的出现是由于病毒的免疫逃避和生存能力进一步增强。自从发现表现为 2019 年冠状病毒病(COVID-19)的严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)以来,大量研究描述了这种病毒与免疫细胞数量病理性增加或减少之间的关联。在本综述中,我们将讨论 COVID-19 中先天性免疫细胞和适应性免疫细胞数量的绝对和相对变化。特别是在病情严重时,中性粒细胞会增加,从而导致炎症和组织损伤。其他粒细胞、嗜碱性粒细胞和嗜酸性粒细胞的失调是一种不常见的 COVID-19 现象。相反,对不同类型单核细胞的影响更倾向于表型的改变,如 HLA-DR 表达,而不是数量上的变化。然而,SARS-CoV-2 感染对适应性免疫反应的影响最为深远。T 细胞淋巴细胞减少与入住重症监护室和死亡的风险增加有关;因此,这一参数对临床决策尤为重要。轻度和重度疾病在病后免疫细胞计数恢复到正常水平的速度上有所不同。跟踪各种免疫细胞计数的恢复轨迹也可能对 COVID-19 的长期监测产生影响。本综述是我们现有知识的一个缩影,显示了我们在短时间内取得的巨大成就。不同免疫细胞计数的变化是一种可用于为患者护理决策提供信息或预测疾病预后的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology.

Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology.

Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信