由生物钟蛋白控制的定时材料自组装。

ArXiv Pub Date : 2024-03-21
Gregor Leech, Lauren Melcher, Michelle Chiu, Maya Nugent, Lily Burton, Janet Kang, Soo Ji Kim, Sourav Roy, Leila Farhadi, Jennifer L Ross, Moumita Das, Michael J Rust, Rae M Robertson-Anderson
{"title":"由生物钟蛋白控制的定时材料自组装。","authors":"Gregor Leech, Lauren Melcher, Michelle Chiu, Maya Nugent, Lily Burton, Janet Kang, Soo Ji Kim, Sourav Roy, Leila Farhadi, Jennifer L Ross, Moumita Das, Michael J Rust, Rae M Robertson-Anderson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows circadian oscillation of material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Timed material self-assembly controlled by circadian clock proteins.\",\"authors\":\"Gregor Leech, Lauren Melcher, Michelle Chiu, Maya Nugent, Lily Burton, Janet Kang, Soo Ji Kim, Sourav Roy, Leila Farhadi, Jennifer L Ross, Moumita Das, Michael J Rust, Rae M Robertson-Anderson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows circadian oscillation of material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.</p>\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物系统提供了一个强大但基本上尚未开发的机会,可以对材料进行自主调节。因为这些系统可以强大地调节化学反应发生的时间和地点,所以它们有能力为合成材料带来复杂的、类似生命的行为。在这里,我们通过使用功能化的昼夜节律时钟蛋白KaiB和KaiC来设计胶体的时间依赖性交联,实现了这一设计壮举。所得材料通过KaiB-KaiC复合物的分子组装,以可编程的动力学自组装,产生材料性质的宏观变化。我们发现胶体交联严格取决于KaiC的磷酸化状态,动力学与KaiB-KaiC络合同步。我们的微观图像分析和计算模型表明,胶体超结构的自组装需要每个胶体连接多个Kai复合物,从而稳定材料不溶解。这项工作介绍了利用生物计时器控制合成材料的概念;更普遍地说,这为使用基于蛋白质的反应网络赋予合成系统类似生命的功能特性打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Timed material self-assembly controlled by circadian clock proteins.

Timed material self-assembly controlled by circadian clock proteins.

Timed material self-assembly controlled by circadian clock proteins.

Timed material self-assembly controlled by circadian clock proteins.

Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows circadian oscillation of material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信