几何计算的统计分析

Kanatani K.
{"title":"几何计算的统计分析","authors":"Kanatani K.","doi":"10.1006/ciun.1994.1020","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the statistical behavior of errors involved in fundamental geometric computations. We first present a statistical model of noise in terms of the <em>covariance matrix</em> of the N-vector. Using this model, we compute the covariance matrices of N-vectors of lines and their intersections. Then, we determine the <em>optimal weights</em> for the least-squares optimization and compute the covariance matrix of the resulting optimal estimate. The result is then applied to line fitting to edges and computation of vanishing points and focuses of expansion. We also point out that <em>statistical biases</em> exist in such computations and present a scheme called <em>renormalization</em>, which iteratively removes the bias by automatically adjusting to noise without knowing noise characteristics. Random number simulations are conducted to confirm our analysis.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"59 3","pages":"Pages 286-306"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1994.1020","citationCount":"31","resultStr":"{\"title\":\"Statistical Analysis of Geometric Computation\",\"authors\":\"Kanatani K.\",\"doi\":\"10.1006/ciun.1994.1020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the statistical behavior of errors involved in fundamental geometric computations. We first present a statistical model of noise in terms of the <em>covariance matrix</em> of the N-vector. Using this model, we compute the covariance matrices of N-vectors of lines and their intersections. Then, we determine the <em>optimal weights</em> for the least-squares optimization and compute the covariance matrix of the resulting optimal estimate. The result is then applied to line fitting to edges and computation of vanishing points and focuses of expansion. We also point out that <em>statistical biases</em> exist in such computations and present a scheme called <em>renormalization</em>, which iteratively removes the bias by automatically adjusting to noise without knowing noise characteristics. Random number simulations are conducted to confirm our analysis.</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"59 3\",\"pages\":\"Pages 286-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1994.1020\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049966084710205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966084710205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文研究了基本几何计算中误差的统计行为。我们首先根据n向量的协方差矩阵提出了噪声的统计模型。利用该模型,我们计算了n个直线向量及其交点的协方差矩阵。然后,我们确定最小二乘优化的最优权重,并计算得到的最优估计的协方差矩阵。然后将结果应用于边缘的线拟合以及消失点和扩展焦点的计算。我们还指出在这种计算中存在统计偏差,并提出了一种称为重整化的方案,该方案在不知道噪声特征的情况下通过自动调整噪声来迭代地消除偏差。随机数值模拟验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis of Geometric Computation

This paper studies the statistical behavior of errors involved in fundamental geometric computations. We first present a statistical model of noise in terms of the covariance matrix of the N-vector. Using this model, we compute the covariance matrices of N-vectors of lines and their intersections. Then, we determine the optimal weights for the least-squares optimization and compute the covariance matrix of the resulting optimal estimate. The result is then applied to line fitting to edges and computation of vanishing points and focuses of expansion. We also point out that statistical biases exist in such computations and present a scheme called renormalization, which iteratively removes the bias by automatically adjusting to noise without knowing noise characteristics. Random number simulations are conducted to confirm our analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信