{"title":"人THP-1巨噬细胞中新型PPAR-γ剪接变异的鉴定和调控","authors":"Ye Chen, Anna R. Jimenez, Jheem D. Medh","doi":"10.1016/j.bbaexp.2006.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>We have previously identified four novel isoforms of PPAR-γ transcripts in monkey macrophages (J. Zhou, K.M. Wilson, J.D. Medh, Genetic analysis of four novel peroxisome proliferator receptor-γ splice variants in monkey macrophages. Biochem. Biophys. Res. Commun., 293 (2002) 274-283). The purpose of this study was to ascertain that these isoforms are also present in humans. Specific primers were designed to amplify individual isoform transcripts. The presence of PPAR-γ4, PPAR-γ5, and PPAR-γ7 transcripts in human THP-1 macrophages was confirmed by RT-PCR and sequencing. A transcript corresponding to PPAR-γ6 was not detected. The presence of novel full-length transcripts and protein was also ascertained by Northern and Western blot analysis. Treatment of THP-1 cells with 15-deoxy-Δ12,14-prostaglandin J<sub>2</sub> (15d-PGJ<sub>2</sub>) resulted in more than 20% induction in the expression of PPAR-γ5 and PPAR-γ7 transcripts by both Northern blot analysis and RT-PCR. Another PPAR-γ ligand, troglitazone, induced expression of only PPAR-γ5. Both ligands inhibited the expression of PPAR-γ1 and PPAR-γ2. Additionally, 15d-PGJ<sub>2</sub> and troglitazone increased the level of apolipoprotein E transcript by 60% but decreased lipoprotein lipase expression by 15% in THP-1 cells. The differential regulation of PPAR-γ transcripts suggests that each transcript isoform may contribute to macrophage function.</p></div>","PeriodicalId":100161,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","volume":"1759 1","pages":"Pages 32-43"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbaexp.2006.01.005","citationCount":"47","resultStr":"{\"title\":\"Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages\",\"authors\":\"Ye Chen, Anna R. Jimenez, Jheem D. Medh\",\"doi\":\"10.1016/j.bbaexp.2006.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have previously identified four novel isoforms of PPAR-γ transcripts in monkey macrophages (J. Zhou, K.M. Wilson, J.D. Medh, Genetic analysis of four novel peroxisome proliferator receptor-γ splice variants in monkey macrophages. Biochem. Biophys. Res. Commun., 293 (2002) 274-283). The purpose of this study was to ascertain that these isoforms are also present in humans. Specific primers were designed to amplify individual isoform transcripts. The presence of PPAR-γ4, PPAR-γ5, and PPAR-γ7 transcripts in human THP-1 macrophages was confirmed by RT-PCR and sequencing. A transcript corresponding to PPAR-γ6 was not detected. The presence of novel full-length transcripts and protein was also ascertained by Northern and Western blot analysis. Treatment of THP-1 cells with 15-deoxy-Δ12,14-prostaglandin J<sub>2</sub> (15d-PGJ<sub>2</sub>) resulted in more than 20% induction in the expression of PPAR-γ5 and PPAR-γ7 transcripts by both Northern blot analysis and RT-PCR. Another PPAR-γ ligand, troglitazone, induced expression of only PPAR-γ5. Both ligands inhibited the expression of PPAR-γ1 and PPAR-γ2. Additionally, 15d-PGJ<sub>2</sub> and troglitazone increased the level of apolipoprotein E transcript by 60% but decreased lipoprotein lipase expression by 15% in THP-1 cells. The differential regulation of PPAR-γ transcripts suggests that each transcript isoform may contribute to macrophage function.</p></div>\",\"PeriodicalId\":100161,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression\",\"volume\":\"1759 1\",\"pages\":\"Pages 32-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbaexp.2006.01.005\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167478106000066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167478106000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages
We have previously identified four novel isoforms of PPAR-γ transcripts in monkey macrophages (J. Zhou, K.M. Wilson, J.D. Medh, Genetic analysis of four novel peroxisome proliferator receptor-γ splice variants in monkey macrophages. Biochem. Biophys. Res. Commun., 293 (2002) 274-283). The purpose of this study was to ascertain that these isoforms are also present in humans. Specific primers were designed to amplify individual isoform transcripts. The presence of PPAR-γ4, PPAR-γ5, and PPAR-γ7 transcripts in human THP-1 macrophages was confirmed by RT-PCR and sequencing. A transcript corresponding to PPAR-γ6 was not detected. The presence of novel full-length transcripts and protein was also ascertained by Northern and Western blot analysis. Treatment of THP-1 cells with 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) resulted in more than 20% induction in the expression of PPAR-γ5 and PPAR-γ7 transcripts by both Northern blot analysis and RT-PCR. Another PPAR-γ ligand, troglitazone, induced expression of only PPAR-γ5. Both ligands inhibited the expression of PPAR-γ1 and PPAR-γ2. Additionally, 15d-PGJ2 and troglitazone increased the level of apolipoprotein E transcript by 60% but decreased lipoprotein lipase expression by 15% in THP-1 cells. The differential regulation of PPAR-γ transcripts suggests that each transcript isoform may contribute to macrophage function.