完全正二次扩展下的场不变量

E.A.M. Hornix
{"title":"完全正二次扩展下的场不变量","authors":"E.A.M. Hornix","doi":"10.1016/S1385-7258(88)80008-8","DOIUrl":null,"url":null,"abstract":"<div><p><em>K</em> = F(√d) is a formally real field and a totally positive quadratic extension of <em>F</em>. A decomposition theorem for quadratic forms in Fed (<em>K</em>) is given. The invariants <em>r(q)</em> and <em>ud(KF)</em> are defined and relations between the invariants <em>β<sub>F</sub>(i)</em>, <em>β<sub>K</sub>(i)</em>, <em>ud(F), ud(K), l(F), l(K)</em> are studied, using the theory of quadratic forms.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 277-291"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80008-8","citationCount":"2","resultStr":"{\"title\":\"Field invariants under totally positive quadratic extensions\",\"authors\":\"E.A.M. Hornix\",\"doi\":\"10.1016/S1385-7258(88)80008-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>K</em> = F(√d) is a formally real field and a totally positive quadratic extension of <em>F</em>. A decomposition theorem for quadratic forms in Fed (<em>K</em>) is given. The invariants <em>r(q)</em> and <em>ud(KF)</em> are defined and relations between the invariants <em>β<sub>F</sub>(i)</em>, <em>β<sub>K</sub>(i)</em>, <em>ud(F), ud(K), l(F), l(K)</em> are studied, using the theory of quadratic forms.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 3\",\"pages\":\"Pages 277-291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80008-8\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

K = F(√d)是一个形式实域,是F的一个完全正的二次型扩展。利用二次型理论,定义了不变量r(q)和ud(KF),研究了不变量βF(i)、βK(i)、ud(F)、ud(K)、l(F)、l(K)之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field invariants under totally positive quadratic extensions

K = F(√d) is a formally real field and a totally positive quadratic extension of F. A decomposition theorem for quadratic forms in Fed (K) is given. The invariants r(q) and ud(KF) are defined and relations between the invariants βF(i), βK(i), ud(F), ud(K), l(F), l(K) are studied, using the theory of quadratic forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信