Marta Himelreich Perić , Marta Takahashi , Davor Ježek , Gerald R. Cunha
{"title":"人类胚胎睾丸的早期发育","authors":"Marta Himelreich Perić , Marta Takahashi , Davor Ježek , Gerald R. Cunha","doi":"10.1016/j.diff.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Human gonadal development culminating in testicular differentiation is described through analysis of histologic sections derived from 33-day to 20-week human embryos/fetuses, focusing on early development (4–8 weeks of gestation). Our study updates the comprehensive studies of Felix (1912), van Wagenen and Simpson (1965), and Juric-Lekic et al. (2013), which were published in books and thus are unsearchable via PubMed. Human gonads develop from the germinal ridge, a thickening of coelomic epithelium on the medial side of the urogenital ridge. The bilateral urogenital ridges contain elements of the mesonephric kidney, namely the mesonephric duct, mesonephric tubules, and mesonephric glomeruli. The germinal ridge, into which primordial germ cells migrate, is initially recognized as a thickening of coelomic epithelium on the urogenital ridge late in the 4th week of gestation. Subsequently, in the 5th week of gestation, a dense mesenchyme develops sub-adjacent to the epithelium of the germinal ridge, and together these elements bulge into the coelomic cavity forming bilateral longitudinal ridges attached to the urogenital ridges. During development, primordial cells migrate into the germinal ridge and subsequently into testicular cords that form within the featureless dense mesenchyme of the germinal ridge at 6–8 weeks of gestation. The initial low density of testicular cords seen at 8 weeks remodels into a dense array of testicular cords surrounded by α-actin-positive myoid cells during the second trimester. Human testicular development shares many features with that of mice being derived from 4 elements: coelomic epithelium, sub-adjacent mesenchyme, primordial germ cells, and the mesonephros.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early development of the human embryonic testis\",\"authors\":\"Marta Himelreich Perić , Marta Takahashi , Davor Ježek , Gerald R. Cunha\",\"doi\":\"10.1016/j.diff.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human gonadal development culminating in testicular differentiation is described through analysis of histologic sections derived from 33-day to 20-week human embryos/fetuses, focusing on early development (4–8 weeks of gestation). Our study updates the comprehensive studies of Felix (1912), van Wagenen and Simpson (1965), and Juric-Lekic et al. (2013), which were published in books and thus are unsearchable via PubMed. Human gonads develop from the germinal ridge, a thickening of coelomic epithelium on the medial side of the urogenital ridge. The bilateral urogenital ridges contain elements of the mesonephric kidney, namely the mesonephric duct, mesonephric tubules, and mesonephric glomeruli. The germinal ridge, into which primordial germ cells migrate, is initially recognized as a thickening of coelomic epithelium on the urogenital ridge late in the 4th week of gestation. Subsequently, in the 5th week of gestation, a dense mesenchyme develops sub-adjacent to the epithelium of the germinal ridge, and together these elements bulge into the coelomic cavity forming bilateral longitudinal ridges attached to the urogenital ridges. During development, primordial cells migrate into the germinal ridge and subsequently into testicular cords that form within the featureless dense mesenchyme of the germinal ridge at 6–8 weeks of gestation. The initial low density of testicular cords seen at 8 weeks remodels into a dense array of testicular cords surrounded by α-actin-positive myoid cells during the second trimester. Human testicular development shares many features with that of mice being derived from 4 elements: coelomic epithelium, sub-adjacent mesenchyme, primordial germ cells, and the mesonephros.</p></div>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468122000524\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000524","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Human gonadal development culminating in testicular differentiation is described through analysis of histologic sections derived from 33-day to 20-week human embryos/fetuses, focusing on early development (4–8 weeks of gestation). Our study updates the comprehensive studies of Felix (1912), van Wagenen and Simpson (1965), and Juric-Lekic et al. (2013), which were published in books and thus are unsearchable via PubMed. Human gonads develop from the germinal ridge, a thickening of coelomic epithelium on the medial side of the urogenital ridge. The bilateral urogenital ridges contain elements of the mesonephric kidney, namely the mesonephric duct, mesonephric tubules, and mesonephric glomeruli. The germinal ridge, into which primordial germ cells migrate, is initially recognized as a thickening of coelomic epithelium on the urogenital ridge late in the 4th week of gestation. Subsequently, in the 5th week of gestation, a dense mesenchyme develops sub-adjacent to the epithelium of the germinal ridge, and together these elements bulge into the coelomic cavity forming bilateral longitudinal ridges attached to the urogenital ridges. During development, primordial cells migrate into the germinal ridge and subsequently into testicular cords that form within the featureless dense mesenchyme of the germinal ridge at 6–8 weeks of gestation. The initial low density of testicular cords seen at 8 weeks remodels into a dense array of testicular cords surrounded by α-actin-positive myoid cells during the second trimester. Human testicular development shares many features with that of mice being derived from 4 elements: coelomic epithelium, sub-adjacent mesenchyme, primordial germ cells, and the mesonephros.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.