珠江三角洲大气中氟端聚体醇和全氟烷烃磺胺类物质的浓度和分布。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Shen, Xiaocong Song, Nankun Li, Ci Zhao
{"title":"珠江三角洲大气中氟端聚体醇和全氟烷烃磺胺类物质的浓度和分布。","authors":"Peng Shen, Xiaocong Song, Nankun Li, Ci Zhao","doi":"10.1080/10934529.2023.2174332","DOIUrl":null,"url":null,"abstract":"Abstract Per and polyfluoroalkyl substances (PFASs) have attracted major global concerns because some of them are environmentally persistent, bioaccumulative, and toxic. Perfluoroalkyl acids (PFAAs) have been well-characterized in water, soil, and sediment; however, fluorotelomer alcohols and perfluoroalkane sulfonamido substances have been overlooked. In this study, concentrations of three fluorotelomer alcohols and four perfluoroalkane sulfonamido substances were determined in the air at nine locations representing urban, rural-urban transect, and urban areas in the Pearl River Delta region, China to investigate their seasonal and spatial distributions and potential sources. At least two of the targeted PFASs were detected in all air samples in the Pearl River Delta region, with concentrations ranging from 371 pg/sampler to 18700 pg/sampler. Fluorotelomer alcohols were dominant compounds (contributing 46% to the ∑7PFAS concentration on average) in the atmosphere in the Pearl River Delta region. The total concentrations of the seven targeted PFASs were significantly higher in summer than in other seasons in urban areas. PFAS concentrations were positively related to the population density in the Pearl River Delta region. Local diffusive emission and long range transport could be sources of the seven PFASs in the air in the Pearl River Delta region.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concentrations and distributions of fluorotelomer alcohols and perfluoroalkane sulfonamido substances in the atmosphere in the Pearl River Delta, China.\",\"authors\":\"Peng Shen, Xiaocong Song, Nankun Li, Ci Zhao\",\"doi\":\"10.1080/10934529.2023.2174332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Per and polyfluoroalkyl substances (PFASs) have attracted major global concerns because some of them are environmentally persistent, bioaccumulative, and toxic. Perfluoroalkyl acids (PFAAs) have been well-characterized in water, soil, and sediment; however, fluorotelomer alcohols and perfluoroalkane sulfonamido substances have been overlooked. In this study, concentrations of three fluorotelomer alcohols and four perfluoroalkane sulfonamido substances were determined in the air at nine locations representing urban, rural-urban transect, and urban areas in the Pearl River Delta region, China to investigate their seasonal and spatial distributions and potential sources. At least two of the targeted PFASs were detected in all air samples in the Pearl River Delta region, with concentrations ranging from 371 pg/sampler to 18700 pg/sampler. Fluorotelomer alcohols were dominant compounds (contributing 46% to the ∑7PFAS concentration on average) in the atmosphere in the Pearl River Delta region. The total concentrations of the seven targeted PFASs were significantly higher in summer than in other seasons in urban areas. PFAS concentrations were positively related to the population density in the Pearl River Delta region. Local diffusive emission and long range transport could be sources of the seven PFASs in the air in the Pearl River Delta region.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2174332\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2174332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

Per和多氟烷基物质(PFASs)引起了全球的广泛关注,因为其中一些物质具有环境持久性、生物蓄积性和毒性。全氟烷基酸(PFAAs)已经在水、土壤和沉积物中得到了很好的表征;然而,氟端粒醇和全氟烷烃磺胺类物质一直被忽视。本研究测定了中国珠江三角洲地区城市、城乡样带和城市地区9个地点空气中3种氟端聚体醇和4种全氟烷烃磺胺物质的浓度,探讨了它们的季节和空间分布及其可能的来源。珠江三角洲地区所有空气样本均检出至少两种靶PFASs,浓度范围为371 ~ 18700 pg/样器。珠江三角洲地区大气中氟端聚体醇为主要化合物,平均贡献∑7PFAS浓度46%。7种目标PFASs的总浓度在夏季显著高于其他季节。珠三角地区PFAS浓度与种群密度呈显著正相关。局部扩散排放和远距离输送可能是珠三角地区空气中7种全氟磺酸的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentrations and distributions of fluorotelomer alcohols and perfluoroalkane sulfonamido substances in the atmosphere in the Pearl River Delta, China.
Abstract Per and polyfluoroalkyl substances (PFASs) have attracted major global concerns because some of them are environmentally persistent, bioaccumulative, and toxic. Perfluoroalkyl acids (PFAAs) have been well-characterized in water, soil, and sediment; however, fluorotelomer alcohols and perfluoroalkane sulfonamido substances have been overlooked. In this study, concentrations of three fluorotelomer alcohols and four perfluoroalkane sulfonamido substances were determined in the air at nine locations representing urban, rural-urban transect, and urban areas in the Pearl River Delta region, China to investigate their seasonal and spatial distributions and potential sources. At least two of the targeted PFASs were detected in all air samples in the Pearl River Delta region, with concentrations ranging from 371 pg/sampler to 18700 pg/sampler. Fluorotelomer alcohols were dominant compounds (contributing 46% to the ∑7PFAS concentration on average) in the atmosphere in the Pearl River Delta region. The total concentrations of the seven targeted PFASs were significantly higher in summer than in other seasons in urban areas. PFAS concentrations were positively related to the population density in the Pearl River Delta region. Local diffusive emission and long range transport could be sources of the seven PFASs in the air in the Pearl River Delta region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信