{"title":"响应面法(RSM)和人工神经网络(ANN)建模在低温干法烟气脱硫中的评价。","authors":"Robert Makomere, Hilary Rutto, Lawrence Koech","doi":"10.1080/10934529.2023.2174334","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of a flue gas desulfurization (FGD) system is characterized by SO<sub>2</sub> removal efficiency (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math>) and reagent conversion (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math>). Achieving a near-perfect reaction environment has been of concern in dry FGD (DFGD) due to the low reactivity compared to the wet and semi-dry units. This study will appraise output responses using modeling by response surface methodology (RSM) and artificial neural networks (ANN) approaches. The impacts of input parameters like hydration time, hydration temperature, diatomite to hydrated lime (Ca(OH)<sub>2</sub>), sulfation temperature and inlet gas concentration will be studied using a randomized central composite design (CCD). ANN fitting tool mapped the CCD metadata using the Levenberg-Marquardt (LM) algorithm activated by the hyperbolic tangent (<i>tansig</i>) function. The hidden cells ranged from 7 to 10 to ascertain the effect node architecture on modeling accuracy. Validation of each procedure was assessed using root mean square error (RMSE), mean square error (MSE) and R-Squared studies. The outcomes presented a more accurate 5-10-2 ANN model in the mapping of the DFGD from R<sup>2</sup> data of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.993 and <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.9986 with a mapping deviation from the RMSE values of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.48465; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.44971 and MSE results of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.23488; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></math>= 0.20229.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"58 3","pages":"191-203"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The assessment of response surface methodology (RSM) and artificial neural network (ANN) modeling in dry flue gas desulfurization at low temperatures.\",\"authors\":\"Robert Makomere, Hilary Rutto, Lawrence Koech\",\"doi\":\"10.1080/10934529.2023.2174334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance of a flue gas desulfurization (FGD) system is characterized by SO<sub>2</sub> removal efficiency (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math>) and reagent conversion (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math>). Achieving a near-perfect reaction environment has been of concern in dry FGD (DFGD) due to the low reactivity compared to the wet and semi-dry units. This study will appraise output responses using modeling by response surface methodology (RSM) and artificial neural networks (ANN) approaches. The impacts of input parameters like hydration time, hydration temperature, diatomite to hydrated lime (Ca(OH)<sub>2</sub>), sulfation temperature and inlet gas concentration will be studied using a randomized central composite design (CCD). ANN fitting tool mapped the CCD metadata using the Levenberg-Marquardt (LM) algorithm activated by the hyperbolic tangent (<i>tansig</i>) function. The hidden cells ranged from 7 to 10 to ascertain the effect node architecture on modeling accuracy. Validation of each procedure was assessed using root mean square error (RMSE), mean square error (MSE) and R-Squared studies. The outcomes presented a more accurate 5-10-2 ANN model in the mapping of the DFGD from R<sup>2</sup> data of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.993 and <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.9986 with a mapping deviation from the RMSE values of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.48465; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.44971 and MSE results of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.23488; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></math>= 0.20229.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\"58 3\",\"pages\":\"191-203\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2174334\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2174334","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The assessment of response surface methodology (RSM) and artificial neural network (ANN) modeling in dry flue gas desulfurization at low temperatures.
The performance of a flue gas desulfurization (FGD) system is characterized by SO2 removal efficiency () and reagent conversion (). Achieving a near-perfect reaction environment has been of concern in dry FGD (DFGD) due to the low reactivity compared to the wet and semi-dry units. This study will appraise output responses using modeling by response surface methodology (RSM) and artificial neural networks (ANN) approaches. The impacts of input parameters like hydration time, hydration temperature, diatomite to hydrated lime (Ca(OH)2), sulfation temperature and inlet gas concentration will be studied using a randomized central composite design (CCD). ANN fitting tool mapped the CCD metadata using the Levenberg-Marquardt (LM) algorithm activated by the hyperbolic tangent (tansig) function. The hidden cells ranged from 7 to 10 to ascertain the effect node architecture on modeling accuracy. Validation of each procedure was assessed using root mean square error (RMSE), mean square error (MSE) and R-Squared studies. The outcomes presented a more accurate 5-10-2 ANN model in the mapping of the DFGD from R2 data of = 0.993 and = 0.9986 with a mapping deviation from the RMSE values of = 0.48465; = 0.44971 and MSE results of = 0.23488; = 0.20229.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.