考虑未知模型参数和测量不确定性的管道疲劳裂纹扩展随机滤波预测

IF 4.8 Q2 ENERGY & FUELS
Durlabh Bartaula, Samer Adeeb, Yong Li
{"title":"考虑未知模型参数和测量不确定性的管道疲劳裂纹扩展随机滤波预测","authors":"Durlabh Bartaula,&nbsp;Samer Adeeb,&nbsp;Yong Li","doi":"10.1016/j.jpse.2021.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this study a methodology is developed and implemented in Python for fatigue crack growth prediction in pipelines, by leveraging measurement data and fatigue growth model predictions. Specifically, Particle Filter (PF) algorithm, Paris law, and the stress intensity factor (SIF) model in API 579 are integrated into a tool to use noisy crack size measurements for estimating the current crack size and fatigue model parameters, also known as joint state-parameter estimation. For illustration purpose, pseudo-data set for crack size measurements is generated considering additive Gaussian white noise of two different noise levels, aiming to mimic crack size data obtained from In-line Inspection (ILI) tools. It is found that the crack state can be reliably estimated compared to noisy measurements and initial model predictions, and the true model parameters can be updated with good accuracy. As such, the current crack size estimated and model parameters updated can be used in the fatigue growth model (i.e., Paris law) to predict the future trajectory of the fatigue crack growth. As more measurement data becomes available, the developed tool more reliably estimates the future crack growth trajectory.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"2 2","pages":"Article 100044"},"PeriodicalIF":4.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667143321000755/pdfft?md5=f4eb60506b7ae020d3ce615f3b2e6462&pid=1-s2.0-S2667143321000755-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Stochastic filter-based fatigue crack growth prediction for pipelines considering unknown model parameters and measurement uncertainty\",\"authors\":\"Durlabh Bartaula,&nbsp;Samer Adeeb,&nbsp;Yong Li\",\"doi\":\"10.1016/j.jpse.2021.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study a methodology is developed and implemented in Python for fatigue crack growth prediction in pipelines, by leveraging measurement data and fatigue growth model predictions. Specifically, Particle Filter (PF) algorithm, Paris law, and the stress intensity factor (SIF) model in API 579 are integrated into a tool to use noisy crack size measurements for estimating the current crack size and fatigue model parameters, also known as joint state-parameter estimation. For illustration purpose, pseudo-data set for crack size measurements is generated considering additive Gaussian white noise of two different noise levels, aiming to mimic crack size data obtained from In-line Inspection (ILI) tools. It is found that the crack state can be reliably estimated compared to noisy measurements and initial model predictions, and the true model parameters can be updated with good accuracy. As such, the current crack size estimated and model parameters updated can be used in the fatigue growth model (i.e., Paris law) to predict the future trajectory of the fatigue crack growth. As more measurement data becomes available, the developed tool more reliably estimates the future crack growth trajectory.</p></div>\",\"PeriodicalId\":100824,\"journal\":{\"name\":\"Journal of Pipeline Science and Engineering\",\"volume\":\"2 2\",\"pages\":\"Article 100044\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667143321000755/pdfft?md5=f4eb60506b7ae020d3ce615f3b2e6462&pid=1-s2.0-S2667143321000755-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pipeline Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667143321000755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143321000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,通过利用测量数据和疲劳扩展模型预测,在Python中开发并实现了管道疲劳裂纹扩展预测的方法。具体来说,API 579中的粒子滤波(PF)算法、Paris定律和应力强度因子(SIF)模型被集成到一个工具中,使用噪声裂纹尺寸测量来估计当前裂纹尺寸和疲劳模型参数,也称为联合状态参数估计。为了便于说明,考虑两种不同噪声水平的加性高斯白噪声,生成裂纹尺寸测量的伪数据集,旨在模拟从在线检测(ILI)工具获得的裂纹尺寸数据。结果表明,与噪声测量和初始模型预测相比,该方法可以可靠地估计裂纹状态,并且可以很好地更新模型的真实参数。因此,当前裂纹尺寸的估计和模型参数的更新可用于疲劳扩展模型(即Paris定律),以预测疲劳裂纹未来的扩展轨迹。随着越来越多的测量数据可用,开发的工具更可靠地估计未来的裂纹扩展轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic filter-based fatigue crack growth prediction for pipelines considering unknown model parameters and measurement uncertainty

In this study a methodology is developed and implemented in Python for fatigue crack growth prediction in pipelines, by leveraging measurement data and fatigue growth model predictions. Specifically, Particle Filter (PF) algorithm, Paris law, and the stress intensity factor (SIF) model in API 579 are integrated into a tool to use noisy crack size measurements for estimating the current crack size and fatigue model parameters, also known as joint state-parameter estimation. For illustration purpose, pseudo-data set for crack size measurements is generated considering additive Gaussian white noise of two different noise levels, aiming to mimic crack size data obtained from In-line Inspection (ILI) tools. It is found that the crack state can be reliably estimated compared to noisy measurements and initial model predictions, and the true model parameters can be updated with good accuracy. As such, the current crack size estimated and model parameters updated can be used in the fatigue growth model (i.e., Paris law) to predict the future trajectory of the fatigue crack growth. As more measurement data becomes available, the developed tool more reliably estimates the future crack growth trajectory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信