使用招收的可数紧度完全空间中的l空间

John Ginsburg
{"title":"使用招收的可数紧度完全空间中的l空间","authors":"John Ginsburg","doi":"10.1016/0016-660X(78)90038-7","DOIUrl":null,"url":null,"abstract":"<div><p>The set theoretic principle ♢ is used to construct hereditarily Lindelof, non-separable subspaces of given complete spaces of countable tightness. The construction is patterned after R. B. Jensen's original use of ♢ to construct a Souslin line, and yields the following result: Suppose <em>X</em> is a regular space of countable tightness having weight at most <em>c</em>. If no non-empty <em>G</em><sub>δ</sub> set in <em>X</em> is contained in a separable subspace of <em>X</em>, and if either <em>X</em> is countably complete or has all closed subsets Baire, then <em>X</em> contains an L-space.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 1","pages":"Pages 9-17"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90038-7","citationCount":"0","resultStr":"{\"title\":\"L-spaces in complete spaces of countable tightness using ♢\",\"authors\":\"John Ginsburg\",\"doi\":\"10.1016/0016-660X(78)90038-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The set theoretic principle ♢ is used to construct hereditarily Lindelof, non-separable subspaces of given complete spaces of countable tightness. The construction is patterned after R. B. Jensen's original use of ♢ to construct a Souslin line, and yields the following result: Suppose <em>X</em> is a regular space of countable tightness having weight at most <em>c</em>. If no non-empty <em>G</em><sub>δ</sub> set in <em>X</em> is contained in a separable subspace of <em>X</em>, and if either <em>X</em> is countably complete or has all closed subsets Baire, then <em>X</em> contains an L-space.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 1\",\"pages\":\"Pages 9-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90038-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用集合论原理来构造给定紧度完备空间的遗传Lindelof不可分子空间。该构造是在R. B. Jensen最初使用招收构造一条苏斯林线之后进行的,并得到以下结果:假设X是一个权值不超过c的可数紧度正则空间。如果X中的非空Gδ集合不包含在X的可分子空间中,并且如果X是可数完备的或有所有闭子集Baire,则X包含一个l空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L-spaces in complete spaces of countable tightness using ♢

The set theoretic principle ♢ is used to construct hereditarily Lindelof, non-separable subspaces of given complete spaces of countable tightness. The construction is patterned after R. B. Jensen's original use of ♢ to construct a Souslin line, and yields the following result: Suppose X is a regular space of countable tightness having weight at most c. If no non-empty Gδ set in X is contained in a separable subspace of X, and if either X is countably complete or has all closed subsets Baire, then X contains an L-space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信