Arisa Shollo , Konstantin Hopf , Tiemo Thiess , Oliver Müller
{"title":"转移机器学习价值创造机制:机器学习价值创造的过程模型","authors":"Arisa Shollo , Konstantin Hopf , Tiemo Thiess , Oliver Müller","doi":"10.1016/j.jsis.2022.101734","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in artificial intelligence (AI) technologies are rapidly changing the competitive landscape. In the search for an appropriate strategic response, firms are currently engaging in a large variety of AI projects. However, recent studies suggest that many companies are falling short in creating tangible business value through AI. As the current scientific body of knowledge lacks empirically-grounded research studies for explaining this phenomenon, we conducted an exploratory interview study focusing on 56 applications of machine learning (ML) in 29 different companies. Through an inductive qualitative analysis, we uncover three broad types and five subtypes of ML value creation mechanisms, identify necessary but not sufficient conditions for successfully leveraging them, and observe that organizations, in their efforts to create value, dynamically shift from one ML value creation mechanism to another by reconfiguring their ML applications (i.e., the shifting practice). We synthesize these findings into a process model of ML value creation, which illustrates how organizations engage in (resource) orchestration by shifting between ML value creation mechanisms as their capabilities evolve and business conditions change. Our model provides an alternative explanation for the current high failure rate of ML projects.</p></div>","PeriodicalId":50037,"journal":{"name":"Journal of Strategic Information Systems","volume":"31 3","pages":"Article 101734"},"PeriodicalIF":8.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963868722000300/pdfft?md5=bd72cef6b3375ba176941dedf1e1628f&pid=1-s2.0-S0963868722000300-main.pdf","citationCount":"9","resultStr":"{\"title\":\"Shifting ML value creation mechanisms: A process model of ML value creation\",\"authors\":\"Arisa Shollo , Konstantin Hopf , Tiemo Thiess , Oliver Müller\",\"doi\":\"10.1016/j.jsis.2022.101734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancements in artificial intelligence (AI) technologies are rapidly changing the competitive landscape. In the search for an appropriate strategic response, firms are currently engaging in a large variety of AI projects. However, recent studies suggest that many companies are falling short in creating tangible business value through AI. As the current scientific body of knowledge lacks empirically-grounded research studies for explaining this phenomenon, we conducted an exploratory interview study focusing on 56 applications of machine learning (ML) in 29 different companies. Through an inductive qualitative analysis, we uncover three broad types and five subtypes of ML value creation mechanisms, identify necessary but not sufficient conditions for successfully leveraging them, and observe that organizations, in their efforts to create value, dynamically shift from one ML value creation mechanism to another by reconfiguring their ML applications (i.e., the shifting practice). We synthesize these findings into a process model of ML value creation, which illustrates how organizations engage in (resource) orchestration by shifting between ML value creation mechanisms as their capabilities evolve and business conditions change. Our model provides an alternative explanation for the current high failure rate of ML projects.</p></div>\",\"PeriodicalId\":50037,\"journal\":{\"name\":\"Journal of Strategic Information Systems\",\"volume\":\"31 3\",\"pages\":\"Article 101734\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0963868722000300/pdfft?md5=bd72cef6b3375ba176941dedf1e1628f&pid=1-s2.0-S0963868722000300-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strategic Information Systems\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963868722000300\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strategic Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963868722000300","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Shifting ML value creation mechanisms: A process model of ML value creation
Advancements in artificial intelligence (AI) technologies are rapidly changing the competitive landscape. In the search for an appropriate strategic response, firms are currently engaging in a large variety of AI projects. However, recent studies suggest that many companies are falling short in creating tangible business value through AI. As the current scientific body of knowledge lacks empirically-grounded research studies for explaining this phenomenon, we conducted an exploratory interview study focusing on 56 applications of machine learning (ML) in 29 different companies. Through an inductive qualitative analysis, we uncover three broad types and five subtypes of ML value creation mechanisms, identify necessary but not sufficient conditions for successfully leveraging them, and observe that organizations, in their efforts to create value, dynamically shift from one ML value creation mechanism to another by reconfiguring their ML applications (i.e., the shifting practice). We synthesize these findings into a process model of ML value creation, which illustrates how organizations engage in (resource) orchestration by shifting between ML value creation mechanisms as their capabilities evolve and business conditions change. Our model provides an alternative explanation for the current high failure rate of ML projects.
期刊介绍:
The Journal of Strategic Information Systems focuses on the strategic management, business and organizational issues associated with the introduction and utilization of information systems, and considers these issues in a global context. The emphasis is on the incorporation of IT into organizations'' strategic thinking, strategy alignment, organizational arrangements and management of change issues.