拓扑空间的乘积

J.E. Vaughan
{"title":"拓扑空间的乘积","authors":"J.E. Vaughan","doi":"10.1016/0016-660X(78)90001-6","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this paper is to unify a number of theorems in topology whose conclusions state that a product of topological spaces has a compactness-like property.Three such theorems are (1) the Tychonoff theorem: Every product of compact spaces is compact, (2) the theorem of C.T. Scarborough and A.H. Stone: Every product of at most <strong>N</strong><sub>1</sub> sequentially compact spaces is countably compact, and (3) the theorem of N. Noble: A countable product of Lindelöf <em>P</em>-spaces is Lindelöf.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 207-217"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90001-6","citationCount":"20","resultStr":"{\"title\":\"Products of topological spaces\",\"authors\":\"J.E. Vaughan\",\"doi\":\"10.1016/0016-660X(78)90001-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this paper is to unify a number of theorems in topology whose conclusions state that a product of topological spaces has a compactness-like property.Three such theorems are (1) the Tychonoff theorem: Every product of compact spaces is compact, (2) the theorem of C.T. Scarborough and A.H. Stone: Every product of at most <strong>N</strong><sub>1</sub> sequentially compact spaces is countably compact, and (3) the theorem of N. Noble: A countable product of Lindelöf <em>P</em>-spaces is Lindelöf.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"8 3\",\"pages\":\"Pages 207-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90001-6\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文的主要目的是统一拓扑学中的一些定理,这些定理的结论表明拓扑空间的乘积具有类紧性。三个这样的定理是(1)Tychonoff定理:紧空间的每个积是紧的;(2)C.T. Scarborough和A.H. Stone的定理:最多N1个顺序紧空间的每个积是可数紧的;(3)N. Noble定理:Lindelöf p空间的一个可数积是Lindelöf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of topological spaces

The main purpose of this paper is to unify a number of theorems in topology whose conclusions state that a product of topological spaces has a compactness-like property.Three such theorems are (1) the Tychonoff theorem: Every product of compact spaces is compact, (2) the theorem of C.T. Scarborough and A.H. Stone: Every product of at most N1 sequentially compact spaces is countably compact, and (3) the theorem of N. Noble: A countable product of Lindelöf P-spaces is Lindelöf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信