{"title":"具有σ-点有限基的空间","authors":"W.N. Hunsaker, W.F. Lindgren","doi":"10.1016/0016-660X(78)90003-X","DOIUrl":null,"url":null,"abstract":"<div><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a σ-disjoint base.</p></span></li><li><span>(FX2)</span><span><p><em>X</em> is quasi-developable and has a base that is the union of a sequence of rank 1 collections.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub>n</sub>) with the property that for each <em>x</em>, <span><math><mtext>{st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>): x ∈st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>)</mtext></math></span>, <em>n</em> a positive integer} is a base for <span><math><mtext>N</mtext></math></span> (x).</p></span></li></ul><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a <em>σ</em>-point finite base.</p></span></li><li><span>(2)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> well ranked.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of sub-infinite rank.</p></span></li><li><span>(4)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of point finite rank.</p></span></li></ul></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 229-232"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90003-X","citationCount":"0","resultStr":"{\"title\":\"Spaces with σ-point finite bases\",\"authors\":\"W.N. Hunsaker, W.F. Lindgren\",\"doi\":\"10.1016/0016-660X(78)90003-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a σ-disjoint base.</p></span></li><li><span>(FX2)</span><span><p><em>X</em> is quasi-developable and has a base that is the union of a sequence of rank 1 collections.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub>n</sub>) with the property that for each <em>x</em>, <span><math><mtext>{st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>): x ∈st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>)</mtext></math></span>, <em>n</em> a positive integer} is a base for <span><math><mtext>N</mtext></math></span> (x).</p></span></li></ul><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a <em>σ</em>-point finite base.</p></span></li><li><span>(2)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> well ranked.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of sub-infinite rank.</p></span></li><li><span>(4)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of point finite rank.</p></span></li></ul></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"8 3\",\"pages\":\"Pages 229-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90003-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X7890003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X7890003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}