{"title":"3D打印支架:开发相关细胞体外模型的挑战","authors":"Beatriz Molina-Martínez , Luis M. Liz-Marzán","doi":"10.1016/j.bbiosy.2022.100044","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) cell culture technology has rapidly emerged, as a result of the increasing demand for improved <em>in vitro</em> systems that better resemble human physiology. Promising microphysiological systems have been fabricated by combining complex 3D culture with 3D-printing technologies. These models overperform existing <em>in vitro</em> systems regarding potential for biofabrication and predictive power. However, most systems under development do not ultimately find a long-term application. We provide herein an overview of the challenges to be considered when developing 3D <em>in vitro</em> systems by means of printed scaffolds, as well as some of the limitations of existing models.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"6 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653442200006X/pdfft?md5=a809c3f30777406e491f645fa0b276b0&pid=1-s2.0-S266653442200006X-main.pdf","citationCount":"2","resultStr":"{\"title\":\"3D printed scaffolds: Challenges toward developing relevant cellular in vitro models\",\"authors\":\"Beatriz Molina-Martínez , Luis M. Liz-Marzán\",\"doi\":\"10.1016/j.bbiosy.2022.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional (3D) cell culture technology has rapidly emerged, as a result of the increasing demand for improved <em>in vitro</em> systems that better resemble human physiology. Promising microphysiological systems have been fabricated by combining complex 3D culture with 3D-printing technologies. These models overperform existing <em>in vitro</em> systems regarding potential for biofabrication and predictive power. However, most systems under development do not ultimately find a long-term application. We provide herein an overview of the challenges to be considered when developing 3D <em>in vitro</em> systems by means of printed scaffolds, as well as some of the limitations of existing models.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":\"6 \",\"pages\":\"Article 100044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266653442200006X/pdfft?md5=a809c3f30777406e491f645fa0b276b0&pid=1-s2.0-S266653442200006X-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653442200006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653442200006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
3D printed scaffolds: Challenges toward developing relevant cellular in vitro models
Three-dimensional (3D) cell culture technology has rapidly emerged, as a result of the increasing demand for improved in vitro systems that better resemble human physiology. Promising microphysiological systems have been fabricated by combining complex 3D culture with 3D-printing technologies. These models overperform existing in vitro systems regarding potential for biofabrication and predictive power. However, most systems under development do not ultimately find a long-term application. We provide herein an overview of the challenges to be considered when developing 3D in vitro systems by means of printed scaffolds, as well as some of the limitations of existing models.