来自社会交往的精神疾病的多模态表型:一项临床多中心前瞻性研究的方案

Alexandra König , Philipp Müller , Johannes Tröger , Hali Lindsay , Jan Alexandersson , Jonas Hinze , Matthias Riemenschneider , Danilo Postin , Eric Ettore , Amandine Lecomte , Michel Musiol , Maxime Amblard , François Bremond , Michal Balazia , Rene Hurlemann
{"title":"来自社会交往的精神疾病的多模态表型:一项临床多中心前瞻性研究的方案","authors":"Alexandra König ,&nbsp;Philipp Müller ,&nbsp;Johannes Tröger ,&nbsp;Hali Lindsay ,&nbsp;Jan Alexandersson ,&nbsp;Jonas Hinze ,&nbsp;Matthias Riemenschneider ,&nbsp;Danilo Postin ,&nbsp;Eric Ettore ,&nbsp;Amandine Lecomte ,&nbsp;Michel Musiol ,&nbsp;Maxime Amblard ,&nbsp;François Bremond ,&nbsp;Michal Balazia ,&nbsp;Rene Hurlemann","doi":"10.1016/j.pmip.2022.100094","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Identifying objective and reliable markers to tailor diagnosis and treatment of psychiatric patients remains a challenge, as conditions like </span>major depression, </span>bipolar disorder<span><span>, or schizophrenia<span><span> are qualified by complex behavior observations or subjective self-reports instead of easily measurable somatic features. Recent progress in computer vision, speech processing and machine learning has enabled detailed and objective characterization of </span>human behavior<span><span> in social interactions. However, the application of these technologies to personalized </span>psychiatry is limited due to the lack of sufficiently large corpora that combine multi-modal measurements with longitudinal assessments of patients covering more than a single disorder. To close this gap, we introduce Mephesto, a multi-centre, multi-disorder longitudinal corpus creation effort designed to develop and validate novel multi-modal markers for </span></span></span>psychiatric conditions. Mephesto will consist of multi-modal audio-, video-, and physiological recordings as well as clinical assessments of psychiatric patients covering a six-week main study period as well as several follow-up recordings spread across twelve months. We outline the rationale and study protocol and introduce four cardinal use cases that will build the foundation of a new state of the art in personalized treatment strategies for psychiatric disorders.</span></p></div>","PeriodicalId":19837,"journal":{"name":"Personalized Medicine in Psychiatry","volume":"33 ","pages":"Article 100094"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimodal phenotyping of psychiatric disorders from social interaction: Protocol of a clinical multicenter prospective study\",\"authors\":\"Alexandra König ,&nbsp;Philipp Müller ,&nbsp;Johannes Tröger ,&nbsp;Hali Lindsay ,&nbsp;Jan Alexandersson ,&nbsp;Jonas Hinze ,&nbsp;Matthias Riemenschneider ,&nbsp;Danilo Postin ,&nbsp;Eric Ettore ,&nbsp;Amandine Lecomte ,&nbsp;Michel Musiol ,&nbsp;Maxime Amblard ,&nbsp;François Bremond ,&nbsp;Michal Balazia ,&nbsp;Rene Hurlemann\",\"doi\":\"10.1016/j.pmip.2022.100094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Identifying objective and reliable markers to tailor diagnosis and treatment of psychiatric patients remains a challenge, as conditions like </span>major depression, </span>bipolar disorder<span><span>, or schizophrenia<span><span> are qualified by complex behavior observations or subjective self-reports instead of easily measurable somatic features. Recent progress in computer vision, speech processing and machine learning has enabled detailed and objective characterization of </span>human behavior<span><span> in social interactions. However, the application of these technologies to personalized </span>psychiatry is limited due to the lack of sufficiently large corpora that combine multi-modal measurements with longitudinal assessments of patients covering more than a single disorder. To close this gap, we introduce Mephesto, a multi-centre, multi-disorder longitudinal corpus creation effort designed to develop and validate novel multi-modal markers for </span></span></span>psychiatric conditions. Mephesto will consist of multi-modal audio-, video-, and physiological recordings as well as clinical assessments of psychiatric patients covering a six-week main study period as well as several follow-up recordings spread across twelve months. We outline the rationale and study protocol and introduce four cardinal use cases that will build the foundation of a new state of the art in personalized treatment strategies for psychiatric disorders.</span></p></div>\",\"PeriodicalId\":19837,\"journal\":{\"name\":\"Personalized Medicine in Psychiatry\",\"volume\":\"33 \",\"pages\":\"Article 100094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized Medicine in Psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468171722000047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized Medicine in Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468171722000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

确定客观可靠的标记来定制精神病患者的诊断和治疗仍然是一个挑战,因为像重度抑郁症、双相情感障碍或精神分裂症这样的疾病是通过复杂的行为观察或主观的自我报告来确定的,而不是容易测量的躯体特征。计算机视觉、语音处理和机器学习的最新进展,使人们能够在社会互动中详细、客观地描述人类行为。然而,这些技术在个性化精神病学中的应用受到限制,因为缺乏足够大的语料库,无法将多模态测量与涵盖多种疾病的患者纵向评估相结合。为了缩小这一差距,我们引入了Mephesto,这是一个多中心、多障碍的纵向语料库创建项目,旨在开发和验证精神疾病的新型多模态标记。Mephesto将包括多模态音频、视频和生理记录,以及精神病患者的临床评估,包括为期六周的主要研究期,以及几个为期12个月的后续记录。我们概述了基本原理和研究方案,并介绍了四个主要用例,这些用例将为精神疾病个性化治疗策略的新状态奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal phenotyping of psychiatric disorders from social interaction: Protocol of a clinical multicenter prospective study

Identifying objective and reliable markers to tailor diagnosis and treatment of psychiatric patients remains a challenge, as conditions like major depression, bipolar disorder, or schizophrenia are qualified by complex behavior observations or subjective self-reports instead of easily measurable somatic features. Recent progress in computer vision, speech processing and machine learning has enabled detailed and objective characterization of human behavior in social interactions. However, the application of these technologies to personalized psychiatry is limited due to the lack of sufficiently large corpora that combine multi-modal measurements with longitudinal assessments of patients covering more than a single disorder. To close this gap, we introduce Mephesto, a multi-centre, multi-disorder longitudinal corpus creation effort designed to develop and validate novel multi-modal markers for psychiatric conditions. Mephesto will consist of multi-modal audio-, video-, and physiological recordings as well as clinical assessments of psychiatric patients covering a six-week main study period as well as several follow-up recordings spread across twelve months. We outline the rationale and study protocol and introduce four cardinal use cases that will build the foundation of a new state of the art in personalized treatment strategies for psychiatric disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信