城市化影响下双溪滨港流域洪水模拟

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Sazali Osman , Lingfang Chen , Abdul Hafiz Mohammad , Lixue Xing , Yangbo Chen
{"title":"城市化影响下双溪滨港流域洪水模拟","authors":"Sazali Osman ,&nbsp;Lingfang Chen ,&nbsp;Abdul Hafiz Mohammad ,&nbsp;Lixue Xing ,&nbsp;Yangbo Chen","doi":"10.1016/j.tcrr.2021.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Urbanization has been a worldwide development trend, which regulates river courses, impervious surfaces and drainage systems. Urbanization causes hydrological effects, including increased runoff volumes, peak discharges and flow concentrations. This manuscript selects the Malaysian Sungai Pinang watershed as a case study to illustrate these land use, channel and flooding changes of Asian coastal cities. The Landsat satellite remote sensing images were first used to estimate the land use/land cover changes of the Sungai Pinang watershed by using SVM algorithm, and the results shows the urbanization was very rapid in the past decades, with the urbanization rate reached 46.41% in 2018 based on the build area rate. River channel characteristics also changed significantly, from natural river to concrete channel. Some flood resilience measures for coastal cities experiencing urbanization are also proposed for development and flood mitigation. Moreover, a flood forecasting model of the Sungai Pinang watershed is established herein. The simulation results of the Liuxihe model constructed in this study conforms to hydrological regularities and can provide a technical reference for flood control and disaster reduction. However, it is necessary to pay attention to the uncertainty of the forecast results.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 2","pages":"Pages 96-105"},"PeriodicalIF":2.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2021.06.001","citationCount":"6","resultStr":"{\"title\":\"Flood modeling of Sungai Pinang Watershed under the impact of urbanization\",\"authors\":\"Sazali Osman ,&nbsp;Lingfang Chen ,&nbsp;Abdul Hafiz Mohammad ,&nbsp;Lixue Xing ,&nbsp;Yangbo Chen\",\"doi\":\"10.1016/j.tcrr.2021.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urbanization has been a worldwide development trend, which regulates river courses, impervious surfaces and drainage systems. Urbanization causes hydrological effects, including increased runoff volumes, peak discharges and flow concentrations. This manuscript selects the Malaysian Sungai Pinang watershed as a case study to illustrate these land use, channel and flooding changes of Asian coastal cities. The Landsat satellite remote sensing images were first used to estimate the land use/land cover changes of the Sungai Pinang watershed by using SVM algorithm, and the results shows the urbanization was very rapid in the past decades, with the urbanization rate reached 46.41% in 2018 based on the build area rate. River channel characteristics also changed significantly, from natural river to concrete channel. Some flood resilience measures for coastal cities experiencing urbanization are also proposed for development and flood mitigation. Moreover, a flood forecasting model of the Sungai Pinang watershed is established herein. The simulation results of the Liuxihe model constructed in this study conforms to hydrological regularities and can provide a technical reference for flood control and disaster reduction. However, it is necessary to pay attention to the uncertainty of the forecast results.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"10 2\",\"pages\":\"Pages 96-105\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tcrr.2021.06.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S222560322100014X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S222560322100014X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 6

摘要

城市化已成为世界范围内的发展趋势,它调节着河道、不透水地表和排水系统。城市化造成水文影响,包括径流量、峰值流量和流量浓度的增加。本文以马来西亚双溪槟榔流域为例,阐述了亚洲沿海城市的土地利用、河道和洪水变化。首先利用Landsat卫星遥感影像,利用SVM算法对双盖滨港流域土地利用/土地覆被变化进行估算,结果表明:近几十年来,双盖滨港流域城市化进程非常迅速,2018年基于建成率的城市化率达到46.41%。河道特征也发生了显著变化,由天然河道变为混凝土河道。本文还针对沿海城市化城市的发展和防洪提出了一些抗洪措施。在此基础上,建立了双溪滨港流域洪水预报模型。本研究构建的流溪河模型模拟结果符合水文规律,可为防洪减灾提供技术参考。但是,需要注意预测结果的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flood modeling of Sungai Pinang Watershed under the impact of urbanization

Urbanization has been a worldwide development trend, which regulates river courses, impervious surfaces and drainage systems. Urbanization causes hydrological effects, including increased runoff volumes, peak discharges and flow concentrations. This manuscript selects the Malaysian Sungai Pinang watershed as a case study to illustrate these land use, channel and flooding changes of Asian coastal cities. The Landsat satellite remote sensing images were first used to estimate the land use/land cover changes of the Sungai Pinang watershed by using SVM algorithm, and the results shows the urbanization was very rapid in the past decades, with the urbanization rate reached 46.41% in 2018 based on the build area rate. River channel characteristics also changed significantly, from natural river to concrete channel. Some flood resilience measures for coastal cities experiencing urbanization are also proposed for development and flood mitigation. Moreover, a flood forecasting model of the Sungai Pinang watershed is established herein. The simulation results of the Liuxihe model constructed in this study conforms to hydrological regularities and can provide a technical reference for flood control and disaster reduction. However, it is necessary to pay attention to the uncertainty of the forecast results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信