C(X)中Whitney连续体的可缩性

Ann Petrus
{"title":"C(X)中Whitney连续体的可缩性","authors":"Ann Petrus","doi":"10.1016/0016-660X(78)90031-4","DOIUrl":null,"url":null,"abstract":"<div><p>We show that there are Whitney maps on the 2-cell such that Whitney continua in the hyperspace of the 2-cell are non-contractible, non-locally contractible, and have non-trivial Čhech cohomology in dimension 2. This implies that contractibility, local contractibility, being an AR, being an ANR, and acyclicity in Čech cohomology are not Whitney properties. We show, however, that contractibility is a Whitney property for the class of dendrites.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 3","pages":"Pages 275-288"},"PeriodicalIF":0.0000,"publicationDate":"1978-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90031-4","citationCount":"27","resultStr":"{\"title\":\"Contractibility of Whitney continua in C(X)\",\"authors\":\"Ann Petrus\",\"doi\":\"10.1016/0016-660X(78)90031-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that there are Whitney maps on the 2-cell such that Whitney continua in the hyperspace of the 2-cell are non-contractible, non-locally contractible, and have non-trivial Čhech cohomology in dimension 2. This implies that contractibility, local contractibility, being an AR, being an ANR, and acyclicity in Čech cohomology are not Whitney properties. We show, however, that contractibility is a Whitney property for the class of dendrites.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 3\",\"pages\":\"Pages 275-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90031-4\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们证明了2-cell上存在Whitney映射,使得2-cell的超空间中的Whitney连续体是不可收缩的,非局部可收缩的,并且在2维空间中具有非平凡Čhech上同调。这意味着可收缩性、局部可收缩性、是AR、是ANR和Čech上同调中的不环性不是惠特尼性质。然而,我们证明了树突类的可收缩性是惠特尼性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contractibility of Whitney continua in C(X)

We show that there are Whitney maps on the 2-cell such that Whitney continua in the hyperspace of the 2-cell are non-contractible, non-locally contractible, and have non-trivial Čhech cohomology in dimension 2. This implies that contractibility, local contractibility, being an AR, being an ANR, and acyclicity in Čech cohomology are not Whitney properties. We show, however, that contractibility is a Whitney property for the class of dendrites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信