一些函数空间的完备性

Surjit Singh Khurana
{"title":"一些函数空间的完备性","authors":"Surjit Singh Khurana","doi":"10.1016/0016-660X(78)90027-2","DOIUrl":null,"url":null,"abstract":"<div><p>It is proved that if <em>X</em> is a sequentially compact Hausdorff space, <em>E</em> a Hausdorff complete uniform space, <em>C</em>(<em>X, E</em>) the space of all <em>E</em>-valued continuous functions on <em>X</em> with <span><math><mtext>C</mtext></math></span> uniformity, <span><math><mtext>C</mtext></math></span> being the class of all compact subsets of <em>X</em>, and <em>H</em> a closed subset of <em>C</em>(<em>X, E</em>) containing a countable union of precompact subsets of <em>C</em>(<em>X, E</em>) as a dense subset, then <em>H</em> is complete.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 3","pages":"Pages 239-241"},"PeriodicalIF":0.0000,"publicationDate":"1978-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90027-2","citationCount":"0","resultStr":"{\"title\":\"A completeness property of some function spaces\",\"authors\":\"Surjit Singh Khurana\",\"doi\":\"10.1016/0016-660X(78)90027-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is proved that if <em>X</em> is a sequentially compact Hausdorff space, <em>E</em> a Hausdorff complete uniform space, <em>C</em>(<em>X, E</em>) the space of all <em>E</em>-valued continuous functions on <em>X</em> with <span><math><mtext>C</mtext></math></span> uniformity, <span><math><mtext>C</mtext></math></span> being the class of all compact subsets of <em>X</em>, and <em>H</em> a closed subset of <em>C</em>(<em>X, E</em>) containing a countable union of precompact subsets of <em>C</em>(<em>X, E</em>) as a dense subset, then <em>H</em> is complete.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 3\",\"pages\":\"Pages 239-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90027-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了如果X是序紧Hausdorff空间,E是Hausdorff完备一致空间,C(X, E)是X上所有具有C一致性的E值连续函数的空间,C是X的所有紧子集的类,H是C(X, E)的闭子集,其中包含C(X, E)的预紧子集的可数并集,则H是完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A completeness property of some function spaces

It is proved that if X is a sequentially compact Hausdorff space, E a Hausdorff complete uniform space, C(X, E) the space of all E-valued continuous functions on X with C uniformity, C being the class of all compact subsets of X, and H a closed subset of C(X, E) containing a countable union of precompact subsets of C(X, E) as a dense subset, then H is complete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信