{"title":"ENSO和北大西洋高压对加勒比地区降雨影响的季节性","authors":"A Giannini, Y Kushnir, M.A Cane","doi":"10.1016/S1464-1909(00)00231-8","DOIUrl":null,"url":null,"abstract":"<div><p>Caribbean rainfall is affected by climate variability of Pacific and Atlantic origin, e.g. the El Nino-Southern Oscillation (ENSO) phenomenon, and variability in the North Atlantic High sea level pressure (SLP) center, respectively. During the lifetime of an ENSO cycle, the basin experiences dry and wet extremes. In the case of a warm event, the dry extreme precedes the mature ENSO phase, and can be explained in terms of a direct response to the atmospheric anomaly generated by the warm sea surface temperatures (SST) in the eastern equatorial Pacific. The wet extreme follows the mature phase, and is consistent with the lagged warming effect of ENSO on tropical North Atlantic SSTs. The wintertime state of the North Atlantic High is hypothesized to affect Caribbean rainfall through its effect on tropical SST. A strong North Atlantic High SLP center during the early months of the calendar year strengthens the trade winds, hence cooling SSTs in the tropical latitudes of the North Atlantic. The effect lingers on most noticeably until the start of the Caribbean rainy season, in May–June, when cool SSTs are associated with deficient rainfall in the basin.</p></div>","PeriodicalId":101025,"journal":{"name":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","volume":"26 2","pages":"Pages 143-147"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1909(00)00231-8","citationCount":"54","resultStr":"{\"title\":\"Seasonality in the impact of ENSO and the north atlantic high on caribbean rainfall\",\"authors\":\"A Giannini, Y Kushnir, M.A Cane\",\"doi\":\"10.1016/S1464-1909(00)00231-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Caribbean rainfall is affected by climate variability of Pacific and Atlantic origin, e.g. the El Nino-Southern Oscillation (ENSO) phenomenon, and variability in the North Atlantic High sea level pressure (SLP) center, respectively. During the lifetime of an ENSO cycle, the basin experiences dry and wet extremes. In the case of a warm event, the dry extreme precedes the mature ENSO phase, and can be explained in terms of a direct response to the atmospheric anomaly generated by the warm sea surface temperatures (SST) in the eastern equatorial Pacific. The wet extreme follows the mature phase, and is consistent with the lagged warming effect of ENSO on tropical North Atlantic SSTs. The wintertime state of the North Atlantic High is hypothesized to affect Caribbean rainfall through its effect on tropical SST. A strong North Atlantic High SLP center during the early months of the calendar year strengthens the trade winds, hence cooling SSTs in the tropical latitudes of the North Atlantic. The effect lingers on most noticeably until the start of the Caribbean rainy season, in May–June, when cool SSTs are associated with deficient rainfall in the basin.</p></div>\",\"PeriodicalId\":101025,\"journal\":{\"name\":\"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere\",\"volume\":\"26 2\",\"pages\":\"Pages 143-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1464-1909(00)00231-8\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464190900002318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464190900002318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seasonality in the impact of ENSO and the north atlantic high on caribbean rainfall
Caribbean rainfall is affected by climate variability of Pacific and Atlantic origin, e.g. the El Nino-Southern Oscillation (ENSO) phenomenon, and variability in the North Atlantic High sea level pressure (SLP) center, respectively. During the lifetime of an ENSO cycle, the basin experiences dry and wet extremes. In the case of a warm event, the dry extreme precedes the mature ENSO phase, and can be explained in terms of a direct response to the atmospheric anomaly generated by the warm sea surface temperatures (SST) in the eastern equatorial Pacific. The wet extreme follows the mature phase, and is consistent with the lagged warming effect of ENSO on tropical North Atlantic SSTs. The wintertime state of the North Atlantic High is hypothesized to affect Caribbean rainfall through its effect on tropical SST. A strong North Atlantic High SLP center during the early months of the calendar year strengthens the trade winds, hence cooling SSTs in the tropical latitudes of the North Atlantic. The effect lingers on most noticeably until the start of the Caribbean rainy season, in May–June, when cool SSTs are associated with deficient rainfall in the basin.