关于将连续函数扩展为可度量AE的问题

L.I. Sennott
{"title":"关于将连续函数扩展为可度量AE的问题","authors":"L.I. Sennott","doi":"10.1016/0016-660X(78)90002-8","DOIUrl":null,"url":null,"abstract":"<div><p>We say that a subset <em>S</em> of a topological space <em>X</em> is <em>M</em>-embedded (<em>M</em><sup><em>N<sub>0</sub></em></sup>-embedded) in <em>X</em> if every map from <em>S</em> to a (separable) metrizable AE can be extended over <em>X</em>. Characterizations of <em>M</em>-and <em>M<em><sup>N<sub>O</sub></sup></em></em>-embedding are given and we prove that <em>S</em> is <em>M</em>-embedded (<em>M</em><sup><em>N<sub>O</sub></em></sup>-embedded) in <em>X</em> iff(<em>X,S</em>) has the Homotopy Extension Property with respect to every (seperable) ANR space.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 219-228"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90002-8","citationCount":"8","resultStr":"{\"title\":\"On extending continuous functions into a metrizable AE\",\"authors\":\"L.I. Sennott\",\"doi\":\"10.1016/0016-660X(78)90002-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We say that a subset <em>S</em> of a topological space <em>X</em> is <em>M</em>-embedded (<em>M</em><sup><em>N<sub>0</sub></em></sup>-embedded) in <em>X</em> if every map from <em>S</em> to a (separable) metrizable AE can be extended over <em>X</em>. Characterizations of <em>M</em>-and <em>M<em><sup>N<sub>O</sub></sup></em></em>-embedding are given and we prove that <em>S</em> is <em>M</em>-embedded (<em>M</em><sup><em>N<sub>O</sub></em></sup>-embedded) in <em>X</em> iff(<em>X,S</em>) has the Homotopy Extension Property with respect to every (seperable) ANR space.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"8 3\",\"pages\":\"Pages 219-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90002-8\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如果从S到一个(可分离的)可度量AE的每一个映射都可以在X上扩展,那么我们就说拓扑空间X的子集S是m嵌入(mn0嵌入)在X上的。给出了m和mno嵌入的特征,并证明了S是m嵌入(mno嵌入)在X上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extending continuous functions into a metrizable AE

We say that a subset S of a topological space X is M-embedded (MN0-embedded) in X if every map from S to a (separable) metrizable AE can be extended over X. Characterizations of M-and MNO-embedding are given and we prove that S is M-embedded (MNO-embedded) in X iff(X,S) has the Homotopy Extension Property with respect to every (seperable) ANR space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信