黎曼曲面上连接模空间的Torelli定理

Topology Pub Date : 2007-07-01 DOI:10.1016/j.top.2007.02.005
Indranil Biswas , Vicente Muñoz
{"title":"黎曼曲面上连接模空间的Torelli定理","authors":"Indranil Biswas ,&nbsp;Vicente Muñoz","doi":"10.1016/j.top.2007.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> be any one-pointed compact connected Riemann surface of genus <span><math><mi>g</mi></math></span>, with <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>. Fix two mutually coprime integers <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>d</mi></math></span>. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the moduli space parametrizing all logarithmic <span><math><mstyle><mi>SL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. We prove that the isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> determines the Riemann surface <span><math><mi>X</mi></math></span> uniquely up to an isomorphism, although the biholomorphism class of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is known to be independent of the complex structure of <span><math><mi>X</mi></math></span>. The isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is independent of the point <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>. A similar result is proved for the moduli space parametrizing logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. The assumption <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span> is necessary for the moduli space of logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections to determine the isomorphism class of <span><math><mi>X</mi></math></span> uniquely.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 3","pages":"Pages 295-317"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.005","citationCount":"9","resultStr":"{\"title\":\"The Torelli theorem for the moduli spaces of connections on a Riemann surface\",\"authors\":\"Indranil Biswas ,&nbsp;Vicente Muñoz\",\"doi\":\"10.1016/j.top.2007.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> be any one-pointed compact connected Riemann surface of genus <span><math><mi>g</mi></math></span>, with <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>. Fix two mutually coprime integers <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>d</mi></math></span>. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the moduli space parametrizing all logarithmic <span><math><mstyle><mi>SL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. We prove that the isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> determines the Riemann surface <span><math><mi>X</mi></math></span> uniquely up to an isomorphism, although the biholomorphism class of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is known to be independent of the complex structure of <span><math><mi>X</mi></math></span>. The isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is independent of the point <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>. A similar result is proved for the moduli space parametrizing logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. The assumption <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span> is necessary for the moduli space of logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections to determine the isomorphism class of <span><math><mi>X</mi></math></span> uniquely.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 3\",\"pages\":\"Pages 295-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.02.005\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设(X,x0)为g属的任意单点紧连Riemann曲面,且g≥3。解决两个互相coprime整数r> 1和d。让MX表示模空间由于对数SL (r、C)连接,奇异x0,矢量包/ X度d。我们证明的同构类品种MX决定了黎曼面X唯一一个同构,尽管MX的biholomorphism类是独立于X的复杂结构的同构类品种MX是独立于点x0∈X。对于X上d次向量束上参数化对数GL(r,C)-连接的模空间也证明了类似的结果。对数GL(r,C)-连接的模空间必须有假设r>1才能唯一确定X的同构类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Torelli theorem for the moduli spaces of connections on a Riemann surface

Let (X,x0) be any one-pointed compact connected Riemann surface of genus g, with g3. Fix two mutually coprime integers r>1 and d. Let MX denote the moduli space parametrizing all logarithmic SL(r,C)-connections, singular over x0, on vector bundles over X of degree d. We prove that the isomorphism class of the variety MX determines the Riemann surface X uniquely up to an isomorphism, although the biholomorphism class of MX is known to be independent of the complex structure of X. The isomorphism class of the variety MX is independent of the point x0X. A similar result is proved for the moduli space parametrizing logarithmic GL(r,C)-connections, singular over x0, on vector bundles over X of degree d. The assumption r>1 is necessary for the moduli space of logarithmic GL(r,C)-connections to determine the isomorphism class of X uniquely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信