具有群落结构的ABCDe随机图模型的性质与性能

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bogumił Kamiński , Tomasz Olczak , Bartosz Pankratz , Paweł Prałat , François Théberge
{"title":"具有群落结构的ABCDe随机图模型的性质与性能","authors":"Bogumił Kamiński ,&nbsp;Tomasz Olczak ,&nbsp;Bartosz Pankratz ,&nbsp;Paweł Prałat ,&nbsp;François Théberge","doi":"10.1016/j.bdr.2022.100348","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate properties and performance of synthetic random graph models with a built-in community structure. Such models are important for evaluating and tuning community detection algorithms that are unsupervised by nature. We propose <strong>ABCDe</strong>—a multi-threaded implementation of the <strong>ABCD</strong> (Artificial Benchmark for Community Detection) graph generator. We discuss the implementation details of the algorithm and compare it with both the previously available sequential version of the <strong>ABCD</strong> model and with the parallel implementation of the standard and extensively used <strong>LFR</strong> (Lancichinetti–Fortunato–Radicchi) generator. We show that <strong>ABCDe</strong> is more than ten times faster and scales better than the parallel implementation of <strong>LFR</strong> provided in <span>NetworKit</span>. Moreover, the algorithm is not only faster but random graphs generated by <strong>ABCD</strong> have similar properties to the ones generated by the original <strong>LFR</strong> algorithm, while the parallelized <span>NetworKit</span> implementation of <strong>LFR</strong> produces graphs that have noticeably different characteristics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214579622000429/pdfft?md5=5b249e2f347f9c9eeb348b655a88cf99&pid=1-s2.0-S2214579622000429-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Properties and Performance of the ABCDe Random Graph Model with Community Structure\",\"authors\":\"Bogumił Kamiński ,&nbsp;Tomasz Olczak ,&nbsp;Bartosz Pankratz ,&nbsp;Paweł Prałat ,&nbsp;François Théberge\",\"doi\":\"10.1016/j.bdr.2022.100348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate properties and performance of synthetic random graph models with a built-in community structure. Such models are important for evaluating and tuning community detection algorithms that are unsupervised by nature. We propose <strong>ABCDe</strong>—a multi-threaded implementation of the <strong>ABCD</strong> (Artificial Benchmark for Community Detection) graph generator. We discuss the implementation details of the algorithm and compare it with both the previously available sequential version of the <strong>ABCD</strong> model and with the parallel implementation of the standard and extensively used <strong>LFR</strong> (Lancichinetti–Fortunato–Radicchi) generator. We show that <strong>ABCDe</strong> is more than ten times faster and scales better than the parallel implementation of <strong>LFR</strong> provided in <span>NetworKit</span>. Moreover, the algorithm is not only faster but random graphs generated by <strong>ABCD</strong> have similar properties to the ones generated by the original <strong>LFR</strong> algorithm, while the parallelized <span>NetworKit</span> implementation of <strong>LFR</strong> produces graphs that have noticeably different characteristics.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214579622000429/pdfft?md5=5b249e2f347f9c9eeb348b655a88cf99&pid=1-s2.0-S2214579622000429-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579622000429\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579622000429","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有内置社团结构的合成随机图模型的性质和性能。这样的模型对于评估和调优自然不受监督的社区检测算法非常重要。我们提出abcde -一个ABCD (Artificial Benchmark for Community Detection)图生成器的多线程实现。我们讨论了该算法的实现细节,并将其与先前可用的ABCD模型的顺序版本以及标准和广泛使用的LFR (Lancichinetti-Fortunato-Radicchi)生成器的并行实现进行了比较。我们证明ABCDe比NetworKit中提供的LFR并行实现快十倍以上,并且可扩展性更好。此外,该算法不仅速度更快,而且ABCD生成的随机图与原始LFR算法生成的随机图具有相似的性质,而LFR的并行化NetworKit实现产生的图具有明显不同的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties and Performance of the ABCDe Random Graph Model with Community Structure

In this paper, we investigate properties and performance of synthetic random graph models with a built-in community structure. Such models are important for evaluating and tuning community detection algorithms that are unsupervised by nature. We propose ABCDe—a multi-threaded implementation of the ABCD (Artificial Benchmark for Community Detection) graph generator. We discuss the implementation details of the algorithm and compare it with both the previously available sequential version of the ABCD model and with the parallel implementation of the standard and extensively used LFR (Lancichinetti–Fortunato–Radicchi) generator. We show that ABCDe is more than ten times faster and scales better than the parallel implementation of LFR provided in NetworKit. Moreover, the algorithm is not only faster but random graphs generated by ABCD have similar properties to the ones generated by the original LFR algorithm, while the parallelized NetworKit implementation of LFR produces graphs that have noticeably different characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信