Bryson W. Katona, Rebecca A Glynn, Taylor Hojnacki, X. Hua
{"title":"Menin:在癌症中的扩展和二分作用","authors":"Bryson W. Katona, Rebecca A Glynn, Taylor Hojnacki, X. Hua","doi":"10.18632/oncoscience.485","DOIUrl":null,"url":null,"abstract":"Menin, the protein product of the MEN1 gene, is a ubiquitously expressed protein that lacks homology with other protein families, yet is highly conserved among various species [1]. Menin primarily resides in the nucleus, where it serves as a scaffold for epigenetic regulators [1, 2]. While much is known about menin and its diverse roles in numerous cellular processes, there remains much to be discovered, especially with regard to its role in cancer.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"44 1","pages":"368 - 370"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Menin: Expanding and dichotomous roles in cancer\",\"authors\":\"Bryson W. Katona, Rebecca A Glynn, Taylor Hojnacki, X. Hua\",\"doi\":\"10.18632/oncoscience.485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Menin, the protein product of the MEN1 gene, is a ubiquitously expressed protein that lacks homology with other protein families, yet is highly conserved among various species [1]. Menin primarily resides in the nucleus, where it serves as a scaffold for epigenetic regulators [1, 2]. While much is known about menin and its diverse roles in numerous cellular processes, there remains much to be discovered, especially with regard to its role in cancer.\",\"PeriodicalId\":94164,\"journal\":{\"name\":\"Oncoscience\",\"volume\":\"44 1\",\"pages\":\"368 - 370\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncoscience.485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Menin, the protein product of the MEN1 gene, is a ubiquitously expressed protein that lacks homology with other protein families, yet is highly conserved among various species [1]. Menin primarily resides in the nucleus, where it serves as a scaffold for epigenetic regulators [1, 2]. While much is known about menin and its diverse roles in numerous cellular processes, there remains much to be discovered, especially with regard to its role in cancer.