{"title":"生物材料辅助构建个体化肿瘤免疫治疗新抗原疫苗。","authors":"Yumin Wu, Liangzhu Feng","doi":"10.1080/17425247.2023.2168640","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities.</p><p><strong>Areas covered: </strong>In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy.</p><p><strong>Expert opinion: </strong>These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy.\",\"authors\":\"Yumin Wu, Liangzhu Feng\",\"doi\":\"10.1080/17425247.2023.2168640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities.</p><p><strong>Areas covered: </strong>In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy.</p><p><strong>Expert opinion: </strong>These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.</p>\",\"PeriodicalId\":12229,\"journal\":{\"name\":\"Expert Opinion on Drug Delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2023.2168640\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17425247.2023.2168640","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy.
Introduction: Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities.
Areas covered: In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy.
Expert opinion: These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.
期刊介绍:
Expert Opinion on Drug Delivery (ISSN 1742-5247 [print], 1744-7593 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles covering all aspects of drug delivery research, from initial concept to potential therapeutic application and final relevance in clinical use. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.