基于FPGA的支持向量机节能嵌入式推理

O. Elgawi, A. Mutawa, Afaq Ahmad
{"title":"基于FPGA的支持向量机节能嵌入式推理","authors":"O. Elgawi, A. Mutawa, Afaq Ahmad","doi":"10.1109/ISVLSI.2019.00038","DOIUrl":null,"url":null,"abstract":"We propose an energy-efficient embedded binarized Support Vector Machine (eBSVM) architecture and present its implementation on low-power FPGA accelerator. With binarized input activations and output weights, the dot product operation (float-point multiplications and additions) can be replaced by bitwise XNOR and popcount operations, respectively. The proposed accelerator computes the two binarized vectors using hamming weights, resulting in reduced execution time and energy consumption. Evaluation results show that eBSVM demonstrates performance and performance-per-Watt on MNIST and CIFAR-10 datasets compared to its fixed point (FP) counterpart implemented in CPU and GPU with small accuracy degradation.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"64 12","pages":"164-168"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Energy-Efficient Embedded Inference of SVMs on FPGA\",\"authors\":\"O. Elgawi, A. Mutawa, Afaq Ahmad\",\"doi\":\"10.1109/ISVLSI.2019.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an energy-efficient embedded binarized Support Vector Machine (eBSVM) architecture and present its implementation on low-power FPGA accelerator. With binarized input activations and output weights, the dot product operation (float-point multiplications and additions) can be replaced by bitwise XNOR and popcount operations, respectively. The proposed accelerator computes the two binarized vectors using hamming weights, resulting in reduced execution time and energy consumption. Evaluation results show that eBSVM demonstrates performance and performance-per-Watt on MNIST and CIFAR-10 datasets compared to its fixed point (FP) counterpart implemented in CPU and GPU with small accuracy degradation.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"64 12\",\"pages\":\"164-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种节能的嵌入式二值化支持向量机(eBSVM)架构,并给出了其在低功耗FPGA加速器上的实现。使用二进制化的输入激活和输出权重,点积操作(浮点乘法和加法)可以分别用按位的XNOR和popcount操作代替。该算法利用汉明权值计算两个二值化向量,减少了执行时间和能量消耗。评估结果表明,与在CPU和GPU上实现的定点支持向量机相比,eBSVM在MNIST和CIFAR-10数据集上具有良好的性能和每瓦特性能,精度下降较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Embedded Inference of SVMs on FPGA
We propose an energy-efficient embedded binarized Support Vector Machine (eBSVM) architecture and present its implementation on low-power FPGA accelerator. With binarized input activations and output weights, the dot product operation (float-point multiplications and additions) can be replaced by bitwise XNOR and popcount operations, respectively. The proposed accelerator computes the two binarized vectors using hamming weights, resulting in reduced execution time and energy consumption. Evaluation results show that eBSVM demonstrates performance and performance-per-Watt on MNIST and CIFAR-10 datasets compared to its fixed point (FP) counterpart implemented in CPU and GPU with small accuracy degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信