{"title":"着色模块与屈曲作为驱动形状变形","authors":"M. Khezri, K. Rasmussen","doi":"10.2139/ssrn.3881757","DOIUrl":null,"url":null,"abstract":"The recent requirements in construction for lower energy consumption have accelerated the trend towards the use of high performance buildings. In these Nearly Zero Energy Buildings (NZEB), simple measures such as natural light control are practiced for maximising the light intake and minimising the heat gain, as required. These modern building envelopes interact with the external environment and are designed to respond to occupant demand, achieving the target energy efficiency and comfort needs. In these kinetic façades, shape morphing triggered by buckling is targeted for energy-saving structural applications. Among the structural forms that are suitable for such applications are thin plates, which are prone to buckling under small in-plane strains. This study presents a novel concept with application in shading control modules. In the proposed models, buckling of slender plates are configured to create a bistable mechanism with closed and open states. The proposed mechanism is simulated using finite element software to validate the feasibility of the core concept and to evaluate buckling as a reliable mechanism in kinetic façade control modules.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shading module with buckling as driver for shape morphing\",\"authors\":\"M. Khezri, K. Rasmussen\",\"doi\":\"10.2139/ssrn.3881757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent requirements in construction for lower energy consumption have accelerated the trend towards the use of high performance buildings. In these Nearly Zero Energy Buildings (NZEB), simple measures such as natural light control are practiced for maximising the light intake and minimising the heat gain, as required. These modern building envelopes interact with the external environment and are designed to respond to occupant demand, achieving the target energy efficiency and comfort needs. In these kinetic façades, shape morphing triggered by buckling is targeted for energy-saving structural applications. Among the structural forms that are suitable for such applications are thin plates, which are prone to buckling under small in-plane strains. This study presents a novel concept with application in shading control modules. In the proposed models, buckling of slender plates are configured to create a bistable mechanism with closed and open states. The proposed mechanism is simulated using finite element software to validate the feasibility of the core concept and to evaluate buckling as a reliable mechanism in kinetic façade control modules.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3881757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3881757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shading module with buckling as driver for shape morphing
The recent requirements in construction for lower energy consumption have accelerated the trend towards the use of high performance buildings. In these Nearly Zero Energy Buildings (NZEB), simple measures such as natural light control are practiced for maximising the light intake and minimising the heat gain, as required. These modern building envelopes interact with the external environment and are designed to respond to occupant demand, achieving the target energy efficiency and comfort needs. In these kinetic façades, shape morphing triggered by buckling is targeted for energy-saving structural applications. Among the structural forms that are suitable for such applications are thin plates, which are prone to buckling under small in-plane strains. This study presents a novel concept with application in shading control modules. In the proposed models, buckling of slender plates are configured to create a bistable mechanism with closed and open states. The proposed mechanism is simulated using finite element software to validate the feasibility of the core concept and to evaluate buckling as a reliable mechanism in kinetic façade control modules.